【題目】在平面直角坐標系中,橢圓經(jīng)過點,且點與橢圓的左、右頂點連線的斜率之積為.

1)求橢圓的方程;

2)若橢圓上存在兩點,使得的垂心(三角形三條高的交點)恰為坐標原點,試求直線的方程.

【答案】1;(2

【解析】

(1)根據(jù)題意,得到,求出,即可得出橢圓方程;

2)設(shè),根據(jù)題意,得到,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,根據(jù)判別式,以及根與系數(shù)關(guān)系,由題意,得到,求出,即可得出結(jié)果.

解:(1)由題意,得

解得,所以橢圓的方程為.

2)設(shè).因為,而,所以,

故可設(shè)直線的方程為.

聯(lián)立,消去,得

首先,由,解得.*

,.

,所以,得,

,整理得,,

所以,

,解得(均適合(*)式).

時,直線恰好經(jīng)過點,不能構(gòu)成三角形,不合題意,故舍去.

所以直線的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,AA1AC,A1BAC1,設(shè)OAC1A1C的交點,點PBC的中點.求證:

1OP∥平面ABB1A1

2)平面ACC1⊥平面OCP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的特殊狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,若船上接到臺發(fā)射的電磁波比臺電磁波早(已知電磁波在空氣中的傳播速度約為,1海里),則點的坐標(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)在一次考試后,從全體考生中隨機抽取44名,獲取他們本次考試的數(shù)學成績(x)和物理成績(y),繪制成如圖散點圖:

根據(jù)散點圖可以看出yx之間有線性相關(guān)關(guān)系,但圖中有兩個異常點A,B.經(jīng)調(diào)查得知,A考生由于重感冒導致物理考試發(fā)揮失常,B考生因故未能參加物理考試.為了使分析結(jié)果更科學準確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中xi,yi分別表示這42名同學的數(shù)學成績、物理成績,i12,…,42yx的相關(guān)系數(shù)r0.82

1)若不剔除A,B兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時yx的相關(guān)系數(shù)為r0.試判斷r0r的大小關(guān)系,并說明理由;

2)求y關(guān)于x的線性回歸方程(系數(shù)精確到0.01),并估計如果B考生加了這次物理考試(已知B考生的數(shù)學成績?yōu)?/span>125分),物理成績是多少?(精確到個位);

3)從概率統(tǒng)計規(guī)律看,本次考試該地區(qū)的物理成績ξ服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為μ的估計值,用樣本方差s2作為σ2的估計值.試求該地區(qū)5000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)Z的數(shù)學期望.

附:①回歸方程中:

②若,則

11.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標準為20元.

(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種質(zhì)地均勻的正四面體玩具的4個面上分別標有數(shù)字01,2,3,將這個玩具拋擲次,記第次拋擲后玩具與桌面接觸的面上所標的數(shù)字為,數(shù)列的前和為.記3的倍數(shù)的概率為

1)求,;

2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)6個零點(互不相同),則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線和直線的直角坐標方程;

(Ⅱ)直線軸交點為,經(jīng)過點的直線與曲線交于兩點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案