【題目】如圖,在三棱柱ABCA1B1C1中,AA1AC,A1BAC1,設(shè)OAC1A1C的交點(diǎn),點(diǎn)PBC的中點(diǎn).求證:

1OP∥平面ABB1A1

2)平面ACC1⊥平面OCP.

【答案】1)證明見解析(2)證明見解析

【解析】

1)根據(jù)平面ACC1A1是平行四邊形,則OA1C的中點(diǎn),又PBC的中點(diǎn),根據(jù)三角形中位線得到OPA1B,再利用線面平行的判定定理證明.

2)根據(jù)AA1AC,得到平面ACC1A1是菱形,從而AC1OC,再由A1BAC1,OPA1B,得到AC1OP,由線面垂直的判定定理得到AC1⊥平面OCP,然后用面面垂直的判定定理證明.

1)∵在三棱柱中,平面ACC1A1是平行四邊形,

OA1C的中點(diǎn),又∵PBC的中點(diǎn),

OPA1B,

A1B平面ABB1A1,OP平面ABB1A1

OP∥平面ABB1A1,

2)∵平面ACC1A1是平行四邊形,且AA1AC,

∴平面ACC1A1是菱形,

AC1A1C,即AC1OC

A1BAC1,且OPA1B

AC1OP,又AC1OCOPOCO,

AC1⊥平面OCP

AC1平面ACC1,

∴平面ACC1⊥平面OCP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形為矩形,二面角,,,.

(1)求證:平面;

(2)為線段上的點(diǎn),當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)討論的單調(diào)性;

2)證明:當(dāng)時,.

3)證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間和的極值;

(2)對于任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.

1)證明:平面平面ABC;

2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某高校綜合評價有兩步:第一步是材料初審,若材料初審不合格,則不能進(jìn)入第二步面試;若材料初審合格,則進(jìn)入第二步面試.只有面試合格者,才能獲得該高校綜合評價的錄取資格,現(xiàn)有AB,C三名學(xué)生報名參加該高校的綜合評價,假設(shè)AB,C三位學(xué)生材料初審合格的概率分別是,,;面試合格的概率分別是,,.

1)求A,B兩位考生有且只有一位考生獲得錄取資格的概率;

2)記隨機(jī)變量XA,B,C三位學(xué)生獲得該高校綜合評價錄取資格的人數(shù),求X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:

印刷冊數(shù)(千冊)

單冊成本(元)

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.

(1)為了評價兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計算結(jié)果精確到);

印刷冊數(shù)(千冊)

單冊成本(元)

模型甲

估計值

殘差

模型乙

估計值

殘差

②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊,若印刷廠以每冊元的價格將書籍出售給訂貨商,求印刷廠二次印刷千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場春節(jié)期間推出一項(xiàng)優(yōu)惠活動,活動規(guī)則如下:消費(fèi)額每滿300元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在區(qū)域Ⅰ返券60元;停在區(qū)域Ⅱ返券30元;停在區(qū)域Ⅲ不返券.例如:消費(fèi)600元,可抽獎2次,所獲得的返券金額是兩次金額之和.

(Ⅰ)若某位顧客消費(fèi)300元,求返券金額不低于30元的概率;

(Ⅱ)若某位顧客恰好消費(fèi)600元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓經(jīng)過點(diǎn),且點(diǎn)與橢圓的左、右頂點(diǎn)連線的斜率之積為.

1)求橢圓的方程;

2)若橢圓上存在兩點(diǎn),使得的垂心(三角形三條高的交點(diǎn))恰為坐標(biāo)原點(diǎn),試求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案