【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱,令h(x)=g(1﹣x2),則關(guān)于函數(shù)y=h(x)的下列4個(gè)結(jié)論: ①函數(shù)y=h(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號(hào)為 . (將你認(rèn)為正確結(jié)論的序號(hào)都填上)

【答案】②③④
【解析】解:∵函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱,

∴g(x)= ,

∴h(x)=g(1﹣x2)=

故h(﹣x)=h(x),

即函數(shù)為偶函數(shù),函數(shù)圖象關(guān)于y軸對(duì)稱,

故①錯(cuò)誤;②正確;

當(dāng)x=0時(shí),函數(shù)取最小值0,故③正確;

當(dāng)x∈(0,1)時(shí),內(nèi)外函數(shù)均為減函數(shù),故函數(shù)y=h(x)在(0,1)上為增函數(shù),故④正確;

所以答案是:②③④

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣3=0.
(1)求圓的圓心C的坐標(biāo)和半徑長(zhǎng);
(2)直線l經(jīng)過坐標(biāo)原點(diǎn)且不與y軸重合,l與圓C相交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),求證: 為定值;
(3)斜率為1的直線m與圓C相交于D、E兩點(diǎn),求直線m的方程,使△CDE的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高三年級(jí)不同性別的學(xué)生對(duì)取消藝術(shù)課的態(tài)度(支持或反對(duì)),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有1350人,男女生比例為8:7,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為 ,通過對(duì)被抽取學(xué)生的問卷調(diào)查,得到如下2x2列聯(lián)表:

支持

反對(duì)

總計(jì)

男生

30

女生

25

總計(jì)

(Ⅰ)完成列聯(lián)表,并判斷能否有99.9%的把握認(rèn)為態(tài)度與性別有關(guān)?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反對(duì);有4名女生被抽到,其中2人支持,2人反對(duì),現(xiàn)從這10人中隨機(jī)抽取一男一女進(jìn)一步調(diào)查原因.求其中恰有一人支持一人反對(duì)的概率.
參考公式及臨界表:K2=

P(K2≥k0

0.10

0.050

0.010

0.005

0.001

k0

2.706%

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府落實(shí)黨中央“精準(zhǔn)扶貧”政策,解決一貧困山村的人畜用水困難,擬修建一個(gè)底面為正方形(由地形限制邊長(zhǎng)不超過10m)的無蓋長(zhǎng)方體蓄水池,設(shè)計(jì)蓄水量為800m3 . 已知底面造價(jià)為160元/m2 , 側(cè)面造價(jià)為100元/m2 . (I)將蓄水池總造價(jià)f(x)(單位:元)表示為底面邊長(zhǎng)x(單位:m)的函數(shù);
(II)運(yùn)用函數(shù)的單調(diào)性定義及相關(guān)知識(shí),求蓄水池總造價(jià)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)單調(diào)遞增,若f(﹣2)=0,則不等式xf(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)解不等式:3≤x2﹣2x<8;
(2)已知a,b,c,d均為實(shí)數(shù),求證:(a2+b2)(c2+d2)≥(ac+bd)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,側(cè)面ABC是一個(gè)等腰直角三角形,∠BAC=90°,底面BCD是一個(gè)等邊三角形,平面ABC⊥平面BCD,E為BD的中點(diǎn),則AE與平面BCD所成角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AA1=AB=AC,BC= AB,且AA1⊥平面ABC,點(diǎn)M、Q分別是BC、CC1的中點(diǎn),點(diǎn)P是棱A1B1上的任一點(diǎn).

(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ= ,試確定點(diǎn)P在棱A1B1上的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點(diǎn),點(diǎn)F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點(diǎn),求三棱錐A1﹣DEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案