從1,2,3,4,5中任取2個不同的數(shù),事件A=“取到的2個數(shù)之和為偶數(shù)”,事件B=“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=________.
P(A)=
P(AB)=,
P(B|A)=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若點(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).試求方程x2+2px-q2+1=0有兩個實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

山姆的意大利餡餅屋中設(shè)有一個投鏢靶該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:
(1)一張大餡餅的概率;
(2)一張中餡餅的概率;
(3)一張小餡餅的概率;
(4)沒得到餡餅的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋擲兩顆均勻的骰子,已知它們的點數(shù)不同,則至少有一顆是6點的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某部門對當(dāng)?shù)爻青l(xiāng)居民進(jìn)行了主題為“你幸福嗎?”的幸福指數(shù)問卷調(diào)査,并在已被問卷調(diào)查的居民中隨機(jī)抽選部分居民參加“幸福職業(yè)”或“幸福愿景”的座談會,被邀請的居民只能選擇其中一場座談會參加.已知A小區(qū)有1人,B小區(qū)有3人收到邀請并將參加一場座談會,若A小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是, B小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是
(Ⅰ)求A、B兩個小區(qū)已收到邀請的人選擇“幸福愿景”座談會的人數(shù)相等的概率;
(Ⅱ)在參加“幸福愿景”座談會的人中,記A、B兩個小區(qū)參會人數(shù)的和為,試求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將號碼分別為1、2、…、9的九個小球放入一個袋中, 這些小球僅號碼不同,其余完全相同.甲從袋中摸出一個球,其號碼為a放回后,乙從此袋中再摸出一個球,其號碼為b.則使不等式a -2b +10>0成立的事件發(fā)生的概率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知箱中共有6個球,其中紅球、黃球、藍(lán)球各2個.每次從該箱中取1個球 (有放回,每球取到的機(jī)會均等),共取三次.設(shè)事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某氣象臺統(tǒng)計,該地區(qū)下雨的概率為,刮風(fēng)的概率是,既刮風(fēng)又下雨的概率為,設(shè)A為下雨,B為刮風(fēng),則=                     (    )
(A)      (B)       (C)       (D)

查看答案和解析>>

同步練習(xí)冊答案