7.已知tan($\frac{π}{6}$-α)=$\sqrt{2}$,則tan($\frac{5}{6}$π+α)=-$\sqrt{2}$.

分析 將$\frac{5}{6}$π+α看做π與$\frac{π}{6}$-α的差.使用誘導(dǎo)公式化簡計算.

解答 解:tan($\frac{5}{6}$π+α)=tan[π-($\frac{π}{6}-α$)]=-tan($\frac{π}{6}-α$)=-$\sqrt{2}$.
故答案為:-$\sqrt{2}$.

點評 本題考查了利用誘導(dǎo)公式化簡計算,觀察所給角的關(guān)系利用誘導(dǎo)公式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$+x2-x(其中e=2.71828…).
(Ⅰ)求f(x)在(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=ln[f(x)-x2+x]-b的兩個零點為x1,x2,證明:$\frac{1}{2}$[g′(x1)+g′(x2)]>g′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在正態(tài)分布N(0,$\frac{4}{9}$)中,數(shù)據(jù)落在(-2,2)內(nèi)的概率為0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(x2-2x-3)3的展開式中x5的系數(shù)為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知log147=a,log145=b,求log3528(用a、b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.找出下列圓的圓心和半徑.
(1)x2+(y+1)2=16圓心為(0,-1),半徑為4;
(2)(2x-2)2+(2y+4)2=4圓心為(1,-2),半徑為1;
(3)(x+1)2+(y+2)2=m2圓心為(-1,-2),半徑為|m|(m≠0);
(4)圓(2x-2)2+(2y-4)2=(-3)2的圓心為(1,2),半徑為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,a,b,c分別是角A,B,C的對邊,且$\frac{cosB}$=-$\frac{cosC}{2a+c}$.
(1)求角B的大;
(2)若b=$\sqrt{13}$,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC三邊長構(gòu)成公差為d(d≠0)的等差數(shù)列,則△ABC最大內(nèi)角α的取值范圍為( 。
A.$\frac{π}{3}$<α≤$\frac{5π}{6}$B.$\frac{π}{3}$<α<πC.$\frac{π}{3}$≤α<πD.$\frac{π}{3}$<α≤$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實數(shù)a,b,c,d滿足a2-lna=b,d=c-2,則(a-c)2+(b-d)2的最小值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步練習(xí)冊答案