12.復(fù)數(shù)z滿足(1+i)•z=1-i,則z=-i.

分析 由(1+i)•z=1-i,得$z=\frac{1-i}{1+i}$,再利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡即可得答案.

解答 解:由(1+i)•z=1-i,
得$z=\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
故答案為:-i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=xlnx,則點(diǎn)(1,0)處的切線方程是x-y-1=0;函數(shù)f(x)=xlnx的最小值為-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|(x+2)(x-3)<0},則A∩N(N為自然數(shù)集)為( 。
A.(-∞,-2)∪(3,+∞)B.(2,3)C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓的對稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)構(gòu)成頂角為120°的等腰三角形,則橢圓的離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“m>1”是“方程$\frac{x^2}{m}-\frac{y^2}{m-1}=1$表示雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|x<-1或x>2},N={x|1<x<3},則M∩N等于    ( 。
A.{x|x<-1或x>1}B.{x|2<x<3}C.{x|-1<x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,已知b=3,A=45°,B=60°,則a=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.[-2,1)D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對于滿足0<b<3a的任意實(shí)數(shù)a,b,函數(shù)f(x)=ax2+bx+c總有兩個(gè)不同的零點(diǎn),則$\frac{a+b-c}{a}$的取值范圍是( 。
A.$({1,\frac{7}{4}}]$B.(1,2]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案