【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的100人的得分統(tǒng)計(jì)結(jié)果如表所示:
組別 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 2 | 15 | 20 | 25 | 24 | 10 | 4 |
(I)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,198),μ近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(37<Z≤79);
(II)在(I)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于μ的可以獲贈2次隨機(jī)話費(fèi),得分低于μ的可以獲贈1次隨機(jī)話費(fèi);
②每次獲贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:
贈送話費(fèi)的金額(單元:元) | 20 | 40 |
概率 |
|
|
現(xiàn)有市民甲參加此次問卷調(diào)查,記ξ(單位:元)為該市民參加問卷調(diào)查獲贈的話費(fèi),求ξ的分布列與數(shù)學(xué)期望.附:參考數(shù)據(jù)與公式:14.
若X~N(μ,σ2),則P(μ﹣σ<X≤μ+σ)=0.6826;P(μ2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.
【答案】(Ⅰ)0.8185.(Ⅱ)見解析.
【解析】
(Ⅰ)由題意求出Ez=65,從而μ=65,進(jìn)而P(51<Z≤79)=0.6826,P(37<Z≤93)=0.9544.由此能求出P(37<Z≤79).
(Ⅱ)由題意知P(Z<μ)=P(Z≥μ),獲贈話費(fèi)ξ的可能取值為20,40,60,80.分別求出相應(yīng)的概率,由此能求出的分布列和Eξ.
解:(Ⅰ)由題意得Ez=35×0.025+45×0.15+55×0.2+65×0.25+75×0.24+5×0.1+95×0.04=65.
∴μ=65,∵σ14,
∴P(65﹣14<Z≤65+14)=P(51<Z≤79)=0.6826,
P(65﹣2×14<Z≤65+2×14)=P(37<Z≤93)=0.9544,
∴P(31<Z≤51)[P(37<Z≤93)﹣P(51<Z≤79)]=0.1359
綜上P(37<Z≤79)=P(37<Z≤51)+P(51<Z≤79)≈0.1359+0.6826=0.8185.
(Ⅱ)由題意知P(Z<μ)=P(Z≥μ),
獲贈話費(fèi)ξ的可能取值為20,40,60,80.
P(ξ=20);
P(ξ=40);
P(ξ=60);
P(ξ=80);
ξ 的分布列為:
ξ | 20 | 40 | 60 | 80 |
P |
|
|
|
|
∴Eξ=2040608037.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在同一個(gè)周期內(nèi),當(dāng)時(shí)y取最大值1,當(dāng)時(shí),y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ex+asinx,x∈(-π,+∞),下列說法正確的是( )
A.當(dāng)a=1時(shí),f(x)在(0,f(0))處的切線方程為2x-y+1=0
B.當(dāng)a=1時(shí),f(x)存在唯一極小值點(diǎn)x0且-1<f(x0)<0
C.對任意a>0,f(x)在(-π,+∞)上均存在零點(diǎn)
D.存在a<0,f(x)在(-π,+∞)上有且只有一個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以為直徑的半圓弧組成,其中為2百米,為.若在半圓弧,線段,線段上各建一個(gè)觀賞亭,再修兩條棧道,使. 記.
(1)試用表示的長;
(2)試確定點(diǎn)的位置,使兩條棧道長度之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②復(fù)平面上表示的點(diǎn)在直線上,③.這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,求出滿足條件的復(fù)數(shù),以及.已知復(fù)數(shù),,______.若,求復(fù)數(shù),以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖是某校高三(1)班的一次數(shù)學(xué)知識競賽成績的莖葉圖(圖中僅列出,的數(shù)據(jù))和頻率分布直方圖.
(1)求分?jǐn)?shù)在的頻率及全班人數(shù);
(2)求頻率分布直方圖中的;
(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 合計(jì) | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
合計(jì) | 20 | 10 | 30 |
經(jīng)計(jì)算,則下列選項(xiàng)正確的是( )
0.50 | 0.25 | 0.1 | 0.050 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
A.有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com