(本題滿(mǎn)分12分)
在平面直角坐標(biāo)系xOy中,曲線(xiàn)與坐標(biāo)軸的交點(diǎn)都在圓C上。
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C被直線(xiàn)截得的弦長(zhǎng)為,求的值。
(1);(Ⅱ)。
本試題主要是考查了圓的一般方程的求解,以及直線(xiàn)與圓相交的位置關(guān)系的綜合運(yùn)用。
(1)因?yàn)榍(xiàn)與坐標(biāo)軸的交點(diǎn)為,代入一般式中可知結(jié)論。
(2)由(1)知圓心坐標(biāo)為(-1,-1),半徑為 
則圓心到直線(xiàn)的距離為,從而得到弦長(zhǎng)的求解。
解:(1)曲線(xiàn)與坐標(biāo)軸的交點(diǎn)為……………………2分
設(shè)圓方程為,則:
……………………..5分
……………………6分
(Ⅱ)由(1)知圓心坐標(biāo)為(-1,-1),半徑為………………8分
則圓心到直線(xiàn)的距離為……………….10分
由勾股定理知 解得……………….12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.直線(xiàn)被圓所截得的弦長(zhǎng)為(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,圓的方程為,若直線(xiàn)上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是     ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)被圓截得的弦長(zhǎng)等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題10分)圓內(nèi)有一點(diǎn)P(-1,2),AB過(guò)點(diǎn)P
(1)若弦長(zhǎng),求直線(xiàn)AB的方程;
(2)若圓上恰有三點(diǎn)到直線(xiàn)AB的距離等于,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩點(diǎn)A(-1,0),B(0,2),點(diǎn)C是圓上任意一點(diǎn),則△ABC面積的最小值是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn):3x-4y-9=0與圓:,(θ為參數(shù))的位置關(guān)系是(    )
A.相切B.相離
C.直線(xiàn)過(guò)圓心D.相交但直線(xiàn)不過(guò)圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)與圓相交于點(diǎn)和點(diǎn)。
(1)求圓心所在的直線(xiàn)方程;    
(2)若圓心的半徑為1,求圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)已知圓G:x2+y2—2x—,經(jīng)過(guò)橢圓(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)橢圓外一點(diǎn)M(m,0)(m>0)的傾斜角為的直線(xiàn)l交橢圓于C、D兩點(diǎn).

(Ⅰ)求橢圓方程
(Ⅱ)當(dāng)右焦點(diǎn)在以線(xiàn)段CD為直徑的圓E的內(nèi)部,求實(shí)數(shù)m的范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案