分析 本題考查的知識點(diǎn)是同角三角函數(shù)關(guān)系運(yùn)算及誘導(dǎo)公式,我們分析已知角與未知角的關(guān)系,易得75°+α為第四象限的角,原式可化為cos[180°-(75°+α)]+sin[(75°+α)-180°]結(jié)合同角三角函數(shù)關(guān)系運(yùn)算及誘導(dǎo)公式,對式子進(jìn)行化簡,不難給出答案
解答 解:方法一:∵cos(75°+α)=$\frac{1}{2}$,α是第三象限的角,其中α為第三象限角,
∴75°+α為第四象限的角
∴75°+α=-60°,
∴α=-135°,
∴cos(105°-α)+sin(α-105°)=cos(-240°)+sin(-240°)=-sin60°+sin60°=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$
方法二:∵cos(75°+α)=$\frac{1}{2}$,α是第三象限的角,其中α為第三象限角
∴75°+α為第四象限的角
∴sin(75°+α)=-$\frac{\sqrt{3}}{2}$
則cos(105°-α)+sin(α-105°)
=cos[180°-(75°+α)]+sin[(75°+α)-180°]
=-cos(75°+α)]-sin(75°+α)
=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$
點(diǎn)評 三角函數(shù)給值求值問題的關(guān)鍵就是分析已知角與未知角的關(guān)系,然后通過角的關(guān)系,選擇恰當(dāng)?shù)墓,即:如果角與角相等,則使用同角三角函數(shù)關(guān)系;如果角與角之間的和或差是直角的整數(shù)倍,則使用誘導(dǎo)公式;如果角與角之間存在和差關(guān)系,則我們用和差角公式;如果角與角存在倍數(shù)關(guān)系,則使用倍角公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com