4.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,則z=4x+3y的最大值為( 。
A.3B.4C.18D.24

分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),結(jié)合函數(shù)的圖象求出z的最大值即可.

解答 解:畫出滿足條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=2}\end{array}\right.$,解得A(3,4),
由z=4x+3y得:y=-$\frac{4}{3}$x+$\frac{1}{3}$z,
結(jié)合圖象得直線過A(3,4)時(shí),z最大,
z的最大值是24,
故選:D.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.從曲線x2+y2=|x|+|y|所圍成的封閉圖形內(nèi)任取一點(diǎn),則該點(diǎn)在單位圓中的概率為$\frac{π}{2+π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(n,1),$\overrightarrow$=(2,1),且|$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2,則n=( 。
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4個(gè)圖形中,能表示集合M到集合N的函數(shù)關(guān)系的有( 。
A.①②③④B.①②③C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x2-3x+2<0},B={x|y=lg(3-x)},則A∩B=( 。
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,a1+a3+a5=15,a2+a4+a6=0,則Sn的最大值為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一條漸近線方程為2x+3y=0,F(xiàn)1,F(xiàn)2分別是雙曲線C的左,右焦點(diǎn),點(diǎn)P在雙曲線C上,且|PF1|=7,則|PF2|等于(  )
A.1B.13C.4或10D.1或13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合{x|x2+ax=0}={0,1},則實(shí)數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a,b∈R,且a>b,則下列不等式中恒成立的是( 。
A.$\frac{1}{a}<\frac{1}$B.a2>b2C.2a>2bD.$\frac{a}>1$

查看答案和解析>>

同步練習(xí)冊(cè)答案