兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線相切,則a的取值范圍是(   )
A.B.
C.-3≤a≤一≤a≤7D.a(chǎn)≥7或a≤—3
C

試題分析:圓,圓心,,兩直線分別與圓相切時對應(yīng)的的邊界值:時,,所以的邊界值分別為,所以選.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:,其中為實常數(shù).
(1)若直線l:被圓C截得的弦長為2,求的值;
(2)設(shè)點,0為坐標(biāo)原點,若圓C上存在點M,使|MA|="2" |MO|,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點和圓

(Ⅰ)過點的直線被圓所截得的弦長為,求直線的方程;
(Ⅱ)試探究是否存在這樣的點是圓內(nèi)部的整點(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點稱為整點),且△OEM的面積?若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知半徑為的⊙軸交于、兩點,為⊙的切線,切點為,且在第一象限,圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過兩點.

(1)求二次函數(shù)的解析式;
(2)求切線的函數(shù)解析式;
(3)線段上是否存在一點,使得以、為頂點的三角形與相似.若存在,請求出所有符合條件的點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與圓相交于兩點,且(其中為原點),則的值為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線x+y+m=0與圓x2+y2=4交于不同的兩點A,B,O是坐標(biāo)原點,,則實數(shù)的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則直線被圓所截得的弦長為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與圓相交于兩點,若,則 (O為坐標(biāo)原點)等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線被圓截得的弦長為            

查看答案和解析>>

同步練習(xí)冊答案