1.設(shè)集合A={x|x<2},B={y|y=2x-1,x∈A},則A∩B=( 。
A.(-∞,3)B.[2,3)C.(-∞,2)D.(-1,2)

分析 由指數(shù)函數(shù)的值域和單調(diào)性,化簡集合B,再由交集的定義,即可得到所求.

解答 解:集合A={x|x<2}=(-∞,2),B={y|y=2x-1,x∈A},
由x<2,可得y=2x-1∈(-1,3),
即B={y|-1<y<3}=(-1,3),
則A∩B=(-1,2).
故選:D.

點評 本題考查集合的交集運算,同時考查指數(shù)函數(shù)的性質(zhì),考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$y=2sin(3x-\frac{π}{3})$的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一名法官在審理一起珍寶盜竊案時,四名嫌疑人甲、乙、丙、丁的供詞如下,甲說:“罪犯在乙、丙、丁三人之中”:乙說:“我沒有作案,是丙偷的”:丙說:“甲、乙兩人中有一人是小偷”:丁說:“乙說的是事實”.經(jīng)過調(diào)查核實,四人中有兩人說的是真話,另外兩人說的是假話,且這四人中只有一人是罪犯,由此可判斷罪犯是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的兩條漸近線分別為l1,l2,經(jīng)過右焦點F垂直于l1的直線分別交l1,l2 于 A,B 兩點.若|$\overrightarrow{OA}$|,|$\overrightarrow{AB}$|,|$\overrightarrow{OB}$|成等差數(shù)列,且$\overrightarrow{BF}$與$\overrightarrow{FA}$反向,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}{x^2}+({1-a})x-alnx$.
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>0,證明:當(dāng)0<x<a時,f(x+a)<f(a-x);
(3)設(shè)x1,x2是f(x)的兩個零點,證明:f′(${\frac{{{x_1}+{x_2}}}{2}}$)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率;
(Ⅱ)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,若a2a3a4=21,且$\frac{15}{{{S_3}{S_5}}}+\frac{35}{{{S_5}{S_7}}}+\frac{21}{{{S_7}{S_3}}}=\frac{3}{7}$.則a3等于( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將函數(shù)$y=2sin(2x+\frac{π}{6})$的圖象向左平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的函數(shù)為( 。
A.$y=2sin(2x+\frac{2π}{3})$B.$y=2sin(2x+\frac{5π}{12})$C.$y=2sin(2x-\frac{π}{3})$D.$y=2sin(2x-\frac{π}{12})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{1}{x}$+$\frac{1}{3-x}$(0<x<3)的最小值為( 。
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

同步練習(xí)冊答案