【題目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實(shí)數(shù)m的值;
(2)若A∩C=,求實(shí)數(shù)b的取值范圍;
(3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:由A中不等式變形得:(x﹣4)(x+1)≤0,

解得:﹣1≤x≤4,即A=[﹣1,4];

由B中不等式變形得:(x﹣m+3)(x﹣m﹣3)≤0,

解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3],

∵A∩B=[0,4],

,

解得:m=3


(2)解:∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4],

∴實(shí)數(shù)b的范圍為b≥4


(3)解:∵A∪B=B,

∴AB,

解得:1≤m≤2


【解析】(1)求出A中不等式的解集確定出A,求出B中不等式解集表示出B,由A與B的交集確定出m的范圍即可;(2)由A與C的交集為空集,確定出b的范圍即可;(3)由A與B的并集為B,得到A為B的子集,確定出m的范圍即可.
【考點(diǎn)精析】利用集合的交集運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點(diǎn),AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長(zhǎng);

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且滿足不等式22a+1>25a2
(1)求實(shí)數(shù)a的取值范圍.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞減,則滿足 的實(shí)數(shù)x的取值范圍是(
A.(
B.[ ,
C.( ,
D.[ ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= 在[0, ]上是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)試討論函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)橢圓右焦點(diǎn)的直線交橢圓兩點(diǎn), 的中點(diǎn),且直線的斜率為

求橢圓的方程;

設(shè)另一直線與橢圓交于兩點(diǎn),原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如甲圖所示,在矩形中, , , 的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,設(shè)b>a≥0,若f(a)=f(b),則af(b)的取值范圍是(
A.[ ,2)
B.[﹣ ,+∞)
C.[﹣ ,﹣
D.[﹣ , ]

查看答案和解析>>

同步練習(xí)冊(cè)答案