【題目】已知函數(shù)

(1)若時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)試討論函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù).

【答案】(1)的遞增在區(qū)間,的遞減區(qū)間;

(2)當(dāng)時(shí),有一個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有二個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有三個(gè)零點(diǎn).

【解析】試題分析:

(1)由題意可得,的遞增在區(qū)間,的遞減區(qū)間;

(2)由題意可得導(dǎo)函數(shù),結(jié)合題意分類(lèi)討論可得:

當(dāng)時(shí),有一個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有二個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有三個(gè)零點(diǎn).

試題解析:

(1)由已知

,得,所以函數(shù)在區(qū)間上遞增;

函數(shù)的遞減區(qū)間是

(2)又,

當(dāng)時(shí),,上單調(diào)遞減,且過(guò)點(diǎn)(0,-),f(-1)=a>0,所以在區(qū)間上有唯一的零點(diǎn);

當(dāng)時(shí),令,兩根為,

是函數(shù)的一個(gè)極小值點(diǎn),是函數(shù)的一個(gè)極大值點(diǎn),

;,

當(dāng),即,函數(shù)在(0,+∞)上恒小于零,

此時(shí)有一個(gè)零點(diǎn);

當(dāng),即時(shí),函數(shù)上有一個(gè)零點(diǎn),此時(shí)有二個(gè)零點(diǎn);

當(dāng),故時(shí),若,即,函數(shù)上有三個(gè)零點(diǎn); 若,即時(shí),函數(shù)上有二個(gè)零點(diǎn).11分

綜上所述:當(dāng)時(shí),有一個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有二個(gè)零點(diǎn);

當(dāng)時(shí),yf(x)有三個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職稱(chēng)晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿(mǎn)分為100分).

(1)求圖中的值;

(2)估計(jì)該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);

(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?

(參考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O:x2+y2=1和定點(diǎn)A(2,1),由O外一點(diǎn)P(a,b)向O引切線PQ,切點(diǎn)為Q,且滿(mǎn)足|PQ|=|PA|.

(1)求實(shí)數(shù)a,b間滿(mǎn)足的等量關(guān)系.

(2)求線段PQ長(zhǎng)的最小值.

(3)若以P為圓心所作的P與O有公共點(diǎn),試求半徑取最小值時(shí)P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,已知四邊形為矩形,為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),的中點(diǎn)為,的中點(diǎn)為,且.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實(shí)數(shù)m的值;
(2)若A∩C=,求實(shí)數(shù)b的取值范圍;
(3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|
(1)若函數(shù)y=f(x)+x在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若對(duì)任意x∈[1,2]時(shí),函數(shù)f(x)的圖像恒在y=1圖像的下方,求實(shí)數(shù)a的取值范圍;
(3)設(shè)a≥2時(shí),求f(x)在區(qū)間[2,4]內(nèi)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)f(x)=x2+bx+c滿(mǎn)足f(2)=f(﹣2),且函數(shù)的f(x)的一個(gè)零點(diǎn)為1. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對(duì)任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的面包以元/個(gè)的價(jià)格賣(mài)給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了90個(gè)面包,以(單位:個(gè), )表示面包的需求量, (單位:元)表示利潤(rùn).

(Ⅰ)求關(guān)于的函數(shù)解析式;

(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率;

III)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿(mǎn)足下列條件:

①周期;②圖象向左平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱(chēng);③.

(1)求函數(shù)的解析式;

(2)設(shè) , ,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案