【題目】已知直線恒過定點,過點引圓的兩條切線,設切點分別為.

1)求直線的一般式方程;

2)求四邊形的外接圓的標準方程.

【答案】(1)(2)

【解析】

1)直線方程整理成a的多項式,關于a恒成立,由恒等式知識可得定點坐標,

過圓外一點的圓的切線有兩條,先考慮斜率不存在的直線是否是切線,然后再求斜率存在的切線方程,本題中知道定點是P(3,1),直線x=3是一條切線,可知一切點為A(3,0),由可求得AB的斜率,從而得直線AB的方程.不需求另一切點坐標.

2)由切線性質知PC是四邊形的外接圓的直徑,外接圓方程易求.

1直線

直線恒過定點.

由題意可知直線是其中一條切線,且切點為.

,,

所以直線的方程為,即.

2

所以四邊形的外接圓時以為直徑的圓,

的中點坐標為,

所以四邊形的外接圓為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調查情況進行整理后制成下表:

學校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學校“創(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線為參數(shù)).在以為原點, 軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,射線除極點外的一個交點為,設直線經(jīng)過點,且傾斜角為,直線與曲線的兩個交點為.

1)求的普通方程和的直角坐標方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數(shù),得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據(jù),在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,在平面上的射影為,且上,且,的中點,四面體的體積為

(Ⅰ)求異面直線所成的角余弦值;

(Ⅱ)求點到平面的距離;

(Ⅲ)若點是棱上一點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(

A.是空間中的四點,若不能構成空間基底,則共面

B.已知為空間的一個基底,若,則也是空間的基底

C.若直線的方向向量為,平面的法向量為,則直線

D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來分,他們分得的白米數(shù)構成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請問:乙應該分得( )白米

A. 96石B. 78石C. 60石D. 42石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

(1)根據(jù)此頻率分布直方圖求該校參加秋季登山活動的教職工年齡的中位數(shù);

(2)已知這兩組各有2名數(shù)學教師,現(xiàn)從這兩個組中各選取2人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學老師的概率;

(3)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,橢圓離心率為、是橢圓C的短軸端點,且到焦點的距離為,點M在橢圓C上運動,且點M不與重合,點N滿足

(1)求橢圓C的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案