14.已知非零向量$\overrightarrow{a}$,$\overrightarrow$夾角為45°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=2.則|$\overrightarrow$|等于(  )
A.2$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 直接利用向量的數(shù)量積,化簡求解即可.

解答 解:非零向量$\overrightarrow{a}$,$\overrightarrow$夾角為45°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=2.
可得${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=4,
4-2$\sqrt{2}$|$\overrightarrow$|+|$\overrightarrow$|2=4
則|$\overrightarrow$|=2$\sqrt{2}$.
故選:A.

點(diǎn)評 本題考查向量的模的求法,數(shù)量積的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.柯西不等式是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的.具體表述如下:對任意實(shí)數(shù)a1,a2,…,an和b1,b2,…bn(n∈N+,n≥2),都有(a12+a22+…+an2)(b12+b22+…bn2)≥(a1b1+a2b2+…+anbn2
(1)證明n=2時柯西不等式成立,并指出等號成立的條件;
(2)若對任意x∈[2,6],不等式3$\sqrt{x-2}$+2$\sqrt{6-x}$≤m恒成立,求實(shí)數(shù)m的取值范圍(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知圓心為C(4,3)的圓經(jīng)過原點(diǎn)O.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線3x-4y+m=0與圓C交于A,B兩點(diǎn).若|AB|=8,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-1,函數(shù)g(x)=2tlnx,其中t≤1.
(Ⅰ)如果函數(shù)f(x)與g(x)在x=1處的切線均為l,求切線l的方程及t的值;
(Ⅱ)如果曲線y=f(x)與y=g(x)有且僅有一個公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=6,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC; 
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)當(dāng)$\frac{PM}{MD}=\frac{1}{2}$時,求四棱錐M-ECDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)向量$\overrightarrow{a}$=(0,2),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$,$\overrightarrow$的夾角等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.通過實(shí)驗(yàn)數(shù)據(jù)可知,某液體的蒸發(fā)速度y(單位:升/小時)與液體所處環(huán)境的溫度x(單位:℃)近似地滿足函數(shù)關(guān)系y=ekx+b(e為自然對數(shù)的底數(shù),k,b為常數(shù)).若該液體在0℃的蒸發(fā)速度是0.1升/小時,在30℃的蒸發(fā)速度為0.8升/小時,則該液體在20℃的蒸發(fā)速度為0.4升/小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若頂點(diǎn)在原點(diǎn)的拋物線的焦點(diǎn)與圓x2+y2-4x=0的圓心重合,則該拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若2sin2x-5sin2y=1,求cos2x+siny的取值范圍$[-\frac{\sqrt{5}}{5},\frac{3}{5}]$.

查看答案和解析>>

同步練習(xí)冊答案