5.集合A={x|x<-1或x>2},B={x|0≤x≤2},則A∩(∁RB)=(  )
A.{x|x<2}B.{x|x<-1或x≥2}C.{x|x≥2}D.{x|x<-1或x>2}

分析 求出B的補(bǔ)集,根據(jù)交集的定義即可求出.

解答 解:∵全集為R,B={x|0≤x≤2},∴∁RB={x|x<0或x>2},
∵A={x|x<-1或x>2},
∴A∩∁RB={x|x<-1或x>2}.
故選:D.

點(diǎn)評 本題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.長方體A1B1C1D1-ABCD中,AB=AD=2,A1A=2$\sqrt{6}$,M為棱C1C的中點(diǎn),C1D與D1C交于點(diǎn)N,求證:AM⊥A1N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對于實(shí)數(shù)a,b(a<b),有f′(a)>0,f′(b)<0.現(xiàn)給出如下結(jié)論:
①?x0∈[a,b],f(x0)=0;
②?x0∈[a,b],f(x0)>f(b);
③?x0∈[a,b],f(x0)≥f(a);
④?x0∈[a,b],f(a)-f(b)=f'(x0)(a-b).
其中結(jié)論正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=$\frac{40}{3x+5}$(1≤x≤10),設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)隔熱層修建多厚對,總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在四面體ABCD中,已知AB⊥AC,BD⊥AC,那么D在面ABC內(nèi)的射影H必在( 。
A.直線AB上B.直線BC上C.直線AC上D.△ABC內(nèi)部

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}-2ax+1(x≤-1)}\\{(a-1)x+4a(x>-1)}\end{array}\right.$在(-∞,+∞)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1)B.(-∞,0)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩名同學(xué)在5次英語口語測試中的成績統(tǒng)計(jì)如下面的莖葉圖所示.
(Ⅰ)現(xiàn)要從中選派一人參加英語口語競賽,從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位學(xué)生參加更保險(xiǎn),請說明理由;
(Ⅱ)用簡單隨機(jī)抽樣方法從甲的這5次測試成績中抽取2次,它們的得分組成一個(gè)樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正四面體ABCD的棱長為$\sqrt{2}$,則其外接球的體積為( 。
A.$\frac{4}{3}$πB.$\frac{{\sqrt{2}}}{3}$πC.$\frac{{\sqrt{3}}}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex(x-aex)恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案