【題目】已知函數(shù),
(1)若函數(shù)存在零點,求實數(shù)的取值范圍;
(2)求證:若,則.
【答案】(1); (2)見解析.
【解析】
(1)在上單調(diào)遞減,在上單調(diào)遞增,只需最小值大于等于零即可;
(2)證,即證,轉(zhuǎn)求左側(cè)的最大值,右側(cè)的最小值即可.
(1),令,得;故在上單調(diào)遞減,在上單調(diào)遞增;
因為且存在零點,故,得。
(2)法一:當,因為,要證,即證,
令,則。令,解得,
故在上單調(diào)遞增,在上單調(diào)遞減,。
令,則。令,解得,
故在上單調(diào)遞增,在上單調(diào)遞減,。
又因為,所以,即,所以,
即。
法二:令,則,
令,
則,所以在單調(diào)遞減,即在單調(diào)遞減,
又,,所以,使得,
且當時,,當時,,
所以在上單調(diào)遞增,在上單調(diào)遞減;
所以,又,所以,
故,令,
則,所以在單調(diào)遞增,所以,
故,即,
所以若,則。
法三:要證,即證,其中
令,,
即證,令,則
,在上單調(diào)遞增,又,
故當時,,單調(diào)遞減;
當時,,單調(diào)遞增,
故,得證。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)y=g(x)的圖象在處的切線方程;
(2)求y=g(x)的最大值;
(3)令f(x)=ax2+bx﹣x(g(x))(a,b∈R).若a≥0,求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品的速度為千克/小時,每小時可獲得的利潤是元,其中.
(1)要使生產(chǎn)該產(chǎn)品每小時獲得的利潤為60元,求每小時生產(chǎn)多少千克?
(2)要使生產(chǎn)400千克該產(chǎn)品獲得的利潤最大,問:此公司每小時應生產(chǎn)多少千克產(chǎn)品?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我省5名醫(yī)學專家馳援湖北武漢抗擊新冠肺炎疫情現(xiàn)把專家全部分配到A,B,C三個集中醫(yī)療點,每個醫(yī)療點至少要分配1人,其中甲專家不去A醫(yī)療點,則不同分配種數(shù)為( )
A.116B.100C.124D.90
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對于資金的管理都有不同的方式.最新調(diào)查表明,人們對于投資理財?shù)呐d趣逐步提高.某投資理財公司做了大量的數(shù)據(jù)調(diào)查,調(diào)查顯示兩種產(chǎn)品投資收益如下:
①投資A產(chǎn)品的收益與投資額的算術(shù)平方根成正比;
②投資B產(chǎn)品的收益與投資額成正比.
公司提供了投資1萬元時兩種產(chǎn)品的收益,分別是0.2萬元和0.4萬元.
(1)分別求出A產(chǎn)品的收益、B產(chǎn)品的收益與投資額x的函數(shù)關(guān)系式;
(2)假如現(xiàn)在你有10萬元的資金全部用于投資理財,你該如何分配資金,才能讓你的收益最大?最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com