【題目】已知函數(shù)的圖象上存在關(guān)于軸對稱的點,則實數(shù)的取值范圍是_________

【答案】

【解析】

函數(shù)fx)與gx)圖象上存在關(guān)于y軸對稱的點,就是f(﹣x)=gx)有解,也就是函數(shù)yf(﹣x)與函數(shù)ygx)有交點,

在同一坐標系內(nèi)畫函數(shù)yf(﹣xx>0)與函數(shù)ygx)=lnx+a)的圖象,結(jié)合圖象解題.

函數(shù)fx)與gx)圖象上存在關(guān)于y軸有對稱的點,

就是f(﹣x)=gx)有解,

也就是函數(shù)yf(﹣x)與函數(shù)ygx)有交點,

在同一坐標系內(nèi)畫函數(shù)yf(﹣xx>0)與函數(shù)ygx)=lnx+a)的圖象:

∴函數(shù)ygx)=lnx+a)的圖象是把由函數(shù)ylnx的圖象向左平移

且平移到過點(0,)后開始,兩函數(shù)的圖象沒有有交點,

把點(0,)代入ylnx+a)得,lna,∴a

a,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

若由資料知yx呈線性相關(guān)關(guān)系.

1)請畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)a,b;

3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列命題正確的是( )

A. 都不相交 B. 都相交

C. 至多與中的一條相交 D. 至少與中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點為,若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紅星海水養(yǎng)殖場進行某水產(chǎn)品的新舊養(yǎng)殖方法的產(chǎn)量對比,收貨時在舊養(yǎng)殖的大量網(wǎng)箱中隨機抽取 個網(wǎng)箱,在新養(yǎng)殖法養(yǎng)殖的大量網(wǎng)箱中也隨機抽取個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量,得樣本頻率分布直方圖如下:

(1)填寫下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

養(yǎng)殖法 箱產(chǎn)量

箱產(chǎn)量

箱產(chǎn)量

總計

舊養(yǎng)殖法

新養(yǎng)殖法

總計

(2)設(shè)兩種養(yǎng)殖方法的產(chǎn)量互相獨立,記表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于,新養(yǎng)殖法的箱產(chǎn)量不低于 ”,估計的概率;

(3)某水產(chǎn)批發(fā)戶從紅星海水養(yǎng)殖場用新養(yǎng)殖法養(yǎng)殖的大量網(wǎng)箱水產(chǎn)品中購買了個網(wǎng)箱的水產(chǎn)品,記表示箱產(chǎn)量位于區(qū)間的網(wǎng)箱個數(shù),以上樣本在相應(yīng)區(qū)間的頻率代替概率,求 .

附:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)內(nèi)只取到一個最大值和一個最小值,且當(dāng)時,;當(dāng)時,.

(1)求函數(shù)的解析式.

(2)求函數(shù)的單調(diào)遞增區(qū)間.

(3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)存在零點,求實數(shù)的取值范圍;

(2)求證:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,中美貿(mào)易摩擦不斷.特別是美國對我國華為的限制.盡管美國對華為極力封鎖,百般刁難并不斷加大對各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2019年不僅凈利潤創(chuàng)下記錄,海外增長同祥強勁.今年,我國華為某一企業(yè)為了進一步增加市場競爭力,計劃在2020年利用新技術(shù)生產(chǎn)某款新手機.通過市場分析,生產(chǎn)此款手機全年需投人固定成本250萬,每生產(chǎn)x(千部)手機,需另投入成本萬元,且,由市場調(diào)研知,每部手機售價0.8萬元,且全年內(nèi)生產(chǎn)的手機當(dāng)年能全部銷售完.

)求出2020年的利潤(萬元)關(guān)于年產(chǎn)量x(千部)的函數(shù)關(guān)系式(利潤=銷售額-成本);

2020年產(chǎn)量x為多少(千部)時,企業(yè)所獲利潤最大?最大利潤是多少?

(說明:當(dāng)時,函數(shù)單調(diào)遞減,在單調(diào)遞增)

查看答案和解析>>

同步練習(xí)冊答案