【題目】橢圓的一條弦被點平分,則此弦所在的直線方程是( )

A. B. C. D.

【答案】D

【解析】

設(shè)過A點的直線與橢圓兩交點的坐標(biāo),分別代入橢圓方程,得到兩個關(guān)系式,分別記作②,①﹣②后化簡得到一個關(guān)系式,然后根據(jù)A為弦EF的中點,由A的坐標(biāo)求出EF兩點的橫縱坐標(biāo)之和,表示出直線EF方程的斜率,把化簡得到的關(guān)系式變形,將EF兩點的橫縱坐標(biāo)之和代入即可求出斜率的值,然后由點A的坐標(biāo)和求出的斜率寫出直線EF的方程即可.

設(shè)過點A的直線與橢圓相交于兩點,E(x1,y1),F(xiàn)(x2,y2),

則有①,②,

①﹣②式可得:

又點A為弦EF的中點,且A(4,2),∴x1+x2=8,y1+y2=4,

(x1﹣x2)﹣(y1﹣y2)=0

即得kEF=

過點A且被該點平分的弦所在直線的方程是y﹣2=﹣(x﹣4),即x+2y﹣8=0.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求數(shù)列{an}的通項公式;
(2)Sn為{an}的前n項和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,直線與直線相交于點,直線與直線的斜率分別記為,且

(1)求點的軌跡的方程;

(2)過定點作直線與曲線交于兩點, 的面積是否存在最大值?若存在,求出面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,,的動點,過點的垂線,線段的中垂線交于點,的軌跡為.

(1)求軌跡的方程;

(2)過且與坐標(biāo)軸不垂直的直線交曲線兩點,若以線段為直徑的圓與直線相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實數(shù)滿足,其中;:實數(shù)滿足.

(1),且為真,為假,求實數(shù)的取值范圍;

(2)的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:

m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;; α⊥r, β⊥r,α∥β

其中正確命題的序號是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是雙曲線 的兩個焦點,PC上一點,若,且的最小內(nèi)角為,則C的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案