(本題滿分16分)

已知數(shù)列{ }、{ }滿足:.

(1)求;            (2)求數(shù)列{ }的通項(xiàng)公式;

(3)設(shè),求實(shí)數(shù)為何值時(shí)恒成立

解:(1)

  ∵      ∴           ……………4分

  (2)∵  ∴

 ∴數(shù)列{}是以-4為首項(xiàng),-1為公差的等差數(shù)列       ……………6分

 ∴       ∴ ……………8分

  (3)        

   ∴      ……………10分

 由條件可知恒成立即可滿足條件設(shè)

 a=1時(shí),恒成立, a>1時(shí),由二次函數(shù)的性質(zhì)知不可能成立

  a<l時(shí),對(duì)稱軸                ……………13分

  f(n)在為單調(diào)遞減函數(shù).

   

    ∴     ∴a<1時(shí)恒成立                 ……………15分

    綜上知:a≤1時(shí),恒成立                      ……………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù),、是常數(shù),且),對(duì)定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案