函數(shù)y=2sin2x+2
3
sinxcosx
的最小正周期為
π
π
分析:把函數(shù)解析式第一項利用二倍角的余弦函數(shù)公式化簡,第二項利用二倍角的正弦函數(shù)公式化簡,后兩項提取2后,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)的最小正周期.
解答:解:函數(shù)y=2sin2x+2
3
sinxcosx

=1-cos2x+
3
sin2x
=1-2(
1
2
cos2x-
3
2
sin2x)
=1-2sin(
π
6
-2x)
=1+2sin(2x-
π
6
),
∵ω=2,∴T=
2
=π.
故答案為:π
點評:此題考查了三角函數(shù)的恒等變形應(yīng)用,以及三角函數(shù)的周期性及其求法,涉及的知識有二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及周期公式,其中利用三角函數(shù)的恒等變形把函數(shù)解析式變?yōu)橐粋角的正弦函數(shù)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
2
sin2x
的圖象向右平移
π
6
個單位后,其圖象的一條對稱軸方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cos2x+sin2x-1,給出下列四個命題
①函數(shù)在區(qū)間[
π
8
8
]
上是減函數(shù);②直線x=
π
8
是函數(shù)圖象的一條對稱軸;③函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x
的圖象向左平移
π
4
而得到;④若x∈[0,
π
2
]
,則f(x)的值域是[-1,
2
]
.其中所有正確的命題的序號是( 。
A、①②B、①③C、①②④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x-1的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
sin(2x+
π
4
)+2
,求
(1)函數(shù)的最小正周期是多少?
(2)函數(shù)的單調(diào)增區(qū)間是什么?
(3)函數(shù)的圖象可由函數(shù)y=
2
sin2x(x∈R)
的圖象如何變換而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x-sin2x的單調(diào)遞減區(qū)間是
[kπ+
π
8
,kπ+
8
],k∈z
[kπ+
π
8
,kπ+
8
],k∈z

查看答案和解析>>

同步練習(xí)冊答案