A. | ①表示無軌跡 ②的軌跡是射線 | B. | ②的軌跡是橢圓 ③的軌跡是雙曲線 | ||
C. | ①的軌跡是射線④的軌跡是直線 | D. | ②、④均表示無軌跡 |
分析 利用幾何意義,結(jié)合橢圓、雙曲線的定義,即可得出結(jié)論.
解答 解:$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距離的差;$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距離的和,
結(jié)合選項(xiàng),可知②的軌跡是橢圓 ③的軌跡是雙曲線,
故選B.
點(diǎn)評 本題考查橢圓、雙曲線的定義,考查學(xué)生分析解決問題的能力,正確理解橢圓、雙曲線的定義是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)>f(2m)>f(log2m) | B. | f(log2m)>f(2m)>f(2) | C. | f(2m)>f(log2m)>f(2) | D. | f(2m)>f(2)>f(log2m) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-l≤x≤2} | B. | {x|-1<x<2} | C. | {x|x≥2,或-1≤-1} | D. | {x|x>2,或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,±$\sqrt{14}$) | B. | (14,±$\sqrt{14}$) | C. | (7,±2$\sqrt{14}$) | D. | (-7,±2$\sqrt{14}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com