分析 (1)展開cos(α+β)與cos(α-β),求出cosαcosβ與sinαsinβ的值,即可計算tanαtanβ的值;
(2)利用同角的平方關(guān)系與完全平方公式,即可求出sinθcosθ的值.
解答 解:(1)∵cos(α+β)=cosαcosβ-sinαsinβ=$\frac{1}{3}$①,
cos(α-β)=cosαcosβ+sinαsinβ=$\frac{1}{5}$②,
由①②組成方程組,解得cosαcosβ=$\frac{4}{15}$,
sinαsinβ=-$\frac{1}{15}$,
∴tanαtanβ=$\frac{sinαsinβ}{cosαcosβ}$=-$\frac{1}{4}$;
(2)∵sin4θ+cos4θ=$\frac{5}{8}$,
∴sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=$\frac{5}{8}$,
∴sin2θcos2θ=$\frac{3}{16}$,
∴(sinθcosθ)2=$\frac{3}{16}$,
又θ∈[0,$\frac{π}{4}$],
∴sinθcosθ=$\frac{\sqrt{3}}{4}$.
點評 本題考查了兩角和與差的余弦公式與同角的平方關(guān)系問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,使得x2+4x+6≥0,為真命題 | B. | ¬p:?x∈R,使得x2+4x+6≥0,為假命題 | ||
C. | ¬p:?x∈R,使得x2+4x+6≥0,為真命題 | D. | ¬p:?x∈R,使得x2+4x+6≥0,為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\sqrt{3}x$ | B. | y=2x | C. | $y=±\sqrt{2}x$ | D. | $y=±\sqrt{3}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com