8.已知圓C:x2+y2-2x+a=0,設(shè)AB為圓C的一條直徑,$\overrightarrow{OA}•\overrightarrow{OB}$=-6(O為坐標(biāo)原點(diǎn)),則a的值為-6.

分析 設(shè)圓的半徑為r,A(1+rcosα,rsinα),則B(1-rcosα,-rsinα),根據(jù)$\overrightarrow{OA}•\overrightarrow{OB}$=-6列方程解出r,再根據(jù)半徑公式求出a.

解答 解:圓C的圓心為C(1,0),設(shè)圓C的半徑為r,A(1+rcosα,rsinα),則B(1-rcosα,-rsinα),
∴$\overrightarrow{OA}•\overrightarrow{OB}$=1-r2cos2α-r2sin2α=1-r2=-6,
∴r=$\sqrt{7}$,
∴$\frac{\sqrt{4-4a}}{2}$=$\sqrt{7}$,解得a=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查了圓的一般方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2-a-lnx.
(Ⅰ)試討論f(x)的單調(diào)性;
(Ⅱ)若f(x)+$\frac{e}{{e}^{x}}$-$\frac{1}{x}$>0在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$(t為參數(shù),0≤a<π)必過點(diǎn)( 。
A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若一個(gè)底面是等腰直角三角形的直三棱柱的正視圖如圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為( 。
A.6π或5πB.3π或5πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.現(xiàn)要給一長(zhǎng)、寬、高分別為3、2、1的長(zhǎng)方體工藝品各面涂色,有紅、橙、黃、藍(lán)、綠五種顏色的涂料可供選擇,要求相鄰的面不能涂相同的顏色,且橙色跟黃色二選一,紅色要涂?jī)蓚(gè)面,則不同的涂色方案種數(shù)有( 。
A.48種B.72種C.96種D.108種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某條曲線的參數(shù)方程是$\left\{\begin{array}{l}x=2(t+\frac{1}{t})\\ y=2(t-\frac{1}{t})\end{array}$(t是參數(shù)),則該曲線是( 。
A.直線B.C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知在△ABC中,b2+a2-c2<0,且b>a,sinA+$\sqrt{2}$cosA=$\frac{5}{3}$,則tanA=(  )
A.$\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{2}}{4}$C.$\frac{7\sqrt{2}}{8}$D.$\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}滿足a2=3,a4+a7=20.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an及前n項(xiàng)和為Sn
(Ⅱ)在(Ⅰ)的條件下,證明:$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知邊長(zhǎng)為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
(Ⅰ)求證:△PAB為直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案