分析 (1)利用三角恒等變換化簡函數(shù)為正弦型函數(shù),求出它的最小正周期;
(2)求出$x∈[{\frac{π}{6},\frac{π}{3}}]$時f(x)的值域,即可得出f(x)的最大、最小值.
解答 解:(1)函數(shù)$f(x)=\frac{{\sqrt{2}}}{2}cos({2x+\frac{π}{4}})+{sin^2}x$
=$\frac{\sqrt{2}}{2}$(cos2xcos$\frac{π}{4}$-sin2xsin$\frac{π}{4}$)+sin2x
=$\frac{1}{2}$(cos2x-sin2x)+$\frac{1-cos2x}{2}$
=-$\frac{1}{2}$sin2x+$\frac{1}{2}$;
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π;
(2)當$x∈[{\frac{π}{6},\frac{π}{3}}]$時,2x∈[$\frac{π}{3}$,$\frac{2π}{3}$],
∴sin2x∈[$\frac{\sqrt{3}}{2}$,1],
∴-$\frac{1}{2}$sin2x+$\frac{1}{2}$∈[0,$\frac{2-\sqrt{3}}{4}$],
即f(x)的最大值為$\frac{{2-\sqrt{3}}}{4}$,最小值為0.
點評 本題考查了三角恒等變換以及三角函數(shù)的圖象與性質的應用問題,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,-1] | B. | [-1,2) | C. | [-1,1] | D. | [1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,3) | B. | (-2,6) | C. | (2,3) | D. | (3,6) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com