【題目】某籃球隊(duì)對(duì)籃球運(yùn)動(dòng)員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對(duì)籃球運(yùn)動(dòng)員在投籃命中時(shí),運(yùn)動(dòng)員在籃筐中心的水平距離這項(xiàng)指標(biāo),對(duì)某運(yùn)動(dòng)員進(jìn)行了若干場(chǎng)次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場(chǎng)比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學(xué)期望.
【答案】解:(I) 設(shè)該運(yùn)動(dòng)員到籃筐的水平距離的中位數(shù)為x,
∵0.05×2+0.10+0.20<0.5,且(0.40+0.20)×1=0.6>0.5,
∴x∈[4,5]
由0.40×(5﹣x)+0.20×1=0.5,解得x=4.25,
∴該運(yùn)動(dòng)員到籃筐的水平距離的中位數(shù)是4.25(米).
(Ⅱ)由頻率分布直方圖得投籃命中時(shí)距離籃筐距離超過(guò)4米的概率為p= ,
隨機(jī)變量ξ的所有可能取值為﹣4,﹣2,0,2,4,
,
,
,
,
,
,
∴X的分布列為:
X | ﹣4 | ﹣2 | 0 | 2 | 4 |
P |
EX=(﹣4)× +(﹣2)× +0× +2× +4× =
【解析】(I) 設(shè)該運(yùn)動(dòng)員到籃筐的水平距離的中位數(shù)為x,推導(dǎo)出0.40×(5﹣x)+0.20×1=0.5,由此能求出該運(yùn)動(dòng)員到籃筐的水平距離的中位數(shù).(Ⅱ)由頻率分布直方圖得投籃命中時(shí)距離籃筐距離超過(guò)4米的概率為p= ,隨機(jī)變量ξ的所有可能取值為﹣4,﹣2,0,2,4,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,M(﹣2,0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A(ρ,θ)為曲線C上一點(diǎn),B(ρ,θ+ ),且|BM|=1.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求|OA|2+|MA|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為(t為參數(shù))曲線C的參數(shù)方程為,為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點(diǎn),求三角形PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求經(jīng)過(guò)點(diǎn)且分別滿足下列條件的直線的一般式方程.
(1)傾斜角為45°;
(2)在軸上的截距為5;
(3)在第二象限與坐標(biāo)軸圍成的三角形面積為4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為分;且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分則“立春”時(shí)日影長(zhǎng)度為
A. 分B. 分C. 分D. 分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:上的點(diǎn)到其焦點(diǎn)的距離為.
(Ⅰ)求的方程;
(Ⅱ) 已知直線不過(guò)點(diǎn)且與相交于,兩點(diǎn),且直線與直線的斜率之積為1,證明:過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè);
(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對(duì)稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說(shuō)明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)數(shù)f′(x)< ,則不等式f(x2)< 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某實(shí)驗(yàn)單次成功的概率為0.8,記事件A為“在實(shí)驗(yàn)條件相同的情況下,重復(fù)3次實(shí)驗(yàn),各次實(shí)驗(yàn)互不影響,則3次實(shí)驗(yàn)中至少成功2次”,現(xiàn)采用隨機(jī)模擬的方法估計(jì)事件4的概率:先由計(jì)算機(jī)給出0~9十個(gè)整數(shù)值的隨機(jī)數(shù),指定0,1表示單次實(shí)驗(yàn)失敗,2,3,4,5,6,7,8,9表示單次實(shí)驗(yàn)成功,以3個(gè)隨機(jī)數(shù)為組,代表3次實(shí)驗(yàn)的結(jié)果經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),如下表:
752 | 029 | 714 | 985 | 034 |
437 | 863 | 694 | 141 | 469 |
037 | 623 | 804 | 601 | 366 |
959 | 742 | 761 | 428 | 261 |
根據(jù)以上方法及數(shù)據(jù),估計(jì)事件A的概率為( )
A.0.384B.0.65C.0.9D.0.904
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com