【題目】扇形AOB中心角為,所在圓半徑為,它按如圖()()兩種方式有內(nèi)接矩形CDEF

(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè)

(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);

試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

【答案】方式一最大值

【解析】

試題(1)運(yùn)用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運(yùn)用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當(dāng)選擇公式進(jìn)行變形;(3)把形如化為,可進(jìn)一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.

試題解析: 解(1)在中,設(shè),則

當(dāng)時,

)令的交點(diǎn)為的交點(diǎn)為,則,

于是,又

當(dāng)時,取得最大值.

,)()兩種方式下矩形面積的最大值為方式一:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的奇函數(shù),當(dāng)時,滿足,

( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,過點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點(diǎn)共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運(yùn)動員的籃球技能進(jìn)行統(tǒng)計研究,針對籃球運(yùn)動員在投籃命中時,運(yùn)動員在籃筐中心的水平距離這項指標(biāo),對某運(yùn)動員進(jìn)行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運(yùn)動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運(yùn)動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點(diǎn).

(1)求證:直線平面;

(2)求直線與平面所成角的余弦值;

(3)設(shè)為線段上任意一點(diǎn),在內(nèi)的平面區(qū)域(包括邊界)是否存在點(diǎn),使,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2019迎新年聯(lián)歡會上,為了活躍大家氣氛,設(shè)置了“摸球中獎”游戲,桌子上放置一個不透明的箱子,箱子中有3個黃色、3個白色的乒乓球(其體積、質(zhì)地完全相同)游戲規(guī)則:從箱子中隨機(jī)摸出3個球,若摸得同一顏色的3個球,摸球者中獎價值50元獎品;若摸得非同一顏色的3個球,摸球者中獎價值20元獎品.

(1)摸出的3個球?yàn)榘浊虻母怕适嵌嗌?

(2)假定有10人次參與游戲,試從概率的角度估算一下需要準(zhǔn)備多少元錢購買獎品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=3cos2x的圖象,只需把函數(shù)y=3sin(2x+ )的圖象上所有的點(diǎn)(
A.向右平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向左平移移動 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過點(diǎn)( , ),且原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點(diǎn)A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)相關(guān)規(guī)定,24小時內(nèi)的降水量為日降水量(單位:mm),不同的日降水量對應(yīng)的降水強(qiáng)度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水強(qiáng)度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監(jiān)測數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,具體數(shù)據(jù)如下:
16 12 23 65 24 37 39 21 36 68
(1)請完成以如表示這組數(shù)據(jù)的莖葉圖;

(2)從樣本中降水強(qiáng)度為大雨以上(含大雨)天氣的5天中隨機(jī)選取2天,求恰有1天是暴雨天氣的概率.

查看答案和解析>>

同步練習(xí)冊答案