已知函數(shù)

   (1)求的最小正周期;

   (2)函數(shù)在區(qū)間上的最大值、最小值及相應(yīng)的x值。

解:(1)

∴函數(shù)的最小正周期

(2)令,

上遞減,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;

(Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;

(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(n??N+),求{an}的通項(xiàng)公式an;(Ⅲ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

. (本題滿分12分)已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(n??N+),求{an}的通項(xiàng)公式an;(Ⅲ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意n??N+bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案