【題目】如圖 所示,一條直角走廊寬為,
(1)若位于水平地面上的一根鐵棒在此直角走廊內(nèi),且,試求鐵棒的長(zhǎng);
(2)若一根鐵棒能水平地通過(guò)此直角走廊,求此鐵棒的最大長(zhǎng)度;
(3)現(xiàn)有一輛轉(zhuǎn)動(dòng)靈活的平板車(chē),其平板面是矩形,它的寬為如圖2.平板車(chē)若想順利通過(guò)直角走廊,其長(zhǎng)度不能超過(guò)多少米?
【答案】(1),,,.
(2)
(3)
【解析】
(1)在圖1中,過(guò)點(diǎn)作,的垂線,垂直分別為,,則,,在,中,分別求解,再相加,即可.
(2)由(1)可知,,令,則,判斷單調(diào)性,再求最小值,即可.
(3)延長(zhǎng)分別交,于,,設(shè),則.由(1)可知,在,中分別計(jì)算,,則,即,令,則,判斷單調(diào)性,再求最小值,即可
(1)在圖1中,過(guò)點(diǎn)作,的垂線,垂直分別為,,則,.
在中
在中
則
即,,,.
(2)由(1)可知,.
令,則
即
當(dāng)時(shí),單調(diào)遞增,單調(diào)遞減.
則即時(shí)
若一根鐵棒能水平地通過(guò)此直角走廊,則需此鐵棒的最大長(zhǎng)度為
(3)延長(zhǎng)分別交,于,,設(shè),則.
由(1)可知,
在中,
在中,
則
令,則
即,,.
當(dāng)時(shí)單調(diào)遞減.
則即時(shí).
平板車(chē)若想順利通過(guò)直角走廊,其長(zhǎng)度不能超過(guò)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間造、型兩類(lèi)桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張、型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤(rùn)2千元和3千元.
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,現(xiàn)從參與調(diào)查的人群中隨機(jī)選出20人的樣本,并將這20人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示
(1)求a的值.
(2)根據(jù)頻率分布直方圖,估計(jì)參與調(diào)查人群的樣本數(shù)據(jù)的分位數(shù)(保留兩位小數(shù)).
(3)若從年齡在的人中隨機(jī)抽取兩位,求兩人恰有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問(wèn)卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問(wèn)題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來(lái)自高三(5)班,從中推選5人接受校園電視臺(tái)采訪,請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·紹興仿真考試)已知數(shù)列{an}的奇數(shù)項(xiàng)依次構(gòu)成公差為d1的等差數(shù)列,偶數(shù)項(xiàng)依次構(gòu)成公差為d2的等差數(shù)列(其中d1,d2為整數(shù)),且對(duì)任意n∈N*,都有an<an+1,若a1=1,a2=2,且數(shù)列{an}的前10項(xiàng)和S10=75,則d1=________,a8=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·浙江卷)已知數(shù)列{an}滿足a1=且an+1=an- (n∈N*).
(1)證明:1≤≤2(n∈N*);
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Sn,證明: (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù), , 為自然對(duì)數(shù)的底數(shù).當(dāng)時(shí),若, ,不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com