【題目】過拋物線上點(diǎn)作三條斜率分別為,,的直線,,,與拋物線分別交于不同于的點(diǎn).若,,則以下結(jié)論正確的是( )
A.直線過定點(diǎn)B.直線斜率一定
C.直線斜率一定D.直線斜率一定
【答案】B
【解析】
由題意,,,均不為0,設(shè),則,同理可得,,由,得,再設(shè)出直線的方程為,利用韋達(dá)定理即可判斷選項(xiàng)A、B,同理判斷選項(xiàng)C、D.
由題意,,,均不為0,設(shè),
則,同理可得,
,由,得,即,①
設(shè)直線的方程為,聯(lián)立拋物線方程可得,
則,代入①式可得,,
此時(shí)直線的方程為,故直線斜率是定值,故B正確,A錯(cuò)誤;
由,得,即,②,同理設(shè)直線
的方程為,聯(lián)立拋物線方程可得,
則,代入②式可得,此時(shí)的方程為
,恒過定點(diǎn),斜率不是定值,故C錯(cuò)誤;
由,,得,即,
即③,同理設(shè)直線的方程為,聯(lián)立拋物線方程可
得,則,代入③式可得
,此時(shí)的方程為恒過定點(diǎn),斜率不為定值.
故D錯(cuò)誤.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+2φ)為偶函數(shù),其中φ∈(0,),則下列關(guān)于函數(shù)g(x)=sin(2x+φ)的描述正確的是( )
A.g(x)在區(qū)間[]上的最小值為﹣1
B.g(x)的圖象可由函數(shù)f(x)的圖象向上平移一個(gè)單位,再向右平移個(gè)單位長(zhǎng)度得到
C.g(x)的圖象的一個(gè)對(duì)稱中心為(,0)
D.g(x)的一個(gè)單調(diào)遞增區(qū)間為[0,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某校學(xué)生每周體育鍛煉落實(shí)的情況,采用分層抽樣的方法,收集100位學(xué)生每周平均鍛煉時(shí)間的樣本數(shù)據(jù)(單位:).根據(jù)這100個(gè)樣本數(shù)據(jù),制作出學(xué)生每周平均鍛煉時(shí)間的頻率分布直方圖(如圖所示).
(Ⅰ)估計(jì)這100名學(xué)生每周平均鍛煉時(shí)間的平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由頻率分布直方圖知,該校學(xué)生每周平均鍛煉時(shí)間近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)求;
(ii)若該校共有5000名學(xué)生,記每周平均鍛煉時(shí)間在區(qū)間的人數(shù)為,試求.
附:,若~,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為:(為參數(shù)),的參數(shù)方程為:(為參數(shù)).
(1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 命題“若,則”的逆否命題是真命題
B. 命題“”的否定是“”
C. 若為真命題,則為真命題
D. 已知,則“”是“”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗(yàn)方式是檢驗(yàn)血液樣本相關(guān)指標(biāo)是否為陽(yáng)性,對(duì)于份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需檢驗(yàn)次.二是混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起,若檢驗(yàn)結(jié)果為陰性,那么這份血液全為陰性,因而檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪些為陽(yáng)性,就需要對(duì)它們?cè)僦鸱輽z驗(yàn),此時(shí)份血液檢驗(yàn)的次數(shù)總共為次.某定點(diǎn)醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗(yàn)方案:方案一,逐個(gè)檢驗(yàn);方案二,平均分成兩組檢驗(yàn);方案三,四個(gè)樣本混在一起檢驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陰性的概率為.
(Ⅰ)求把2份血液樣本混合檢驗(yàn)結(jié)果為陽(yáng)性的概率;
(Ⅱ)若檢驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個(gè)最“優(yōu)”?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程是:
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程:
(Ⅱ)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com