【題目】已知函數(shù)
(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得在上的值域恰好是?若存在,求出實數(shù)的值;若不存在,說明理由.
【答案】(1)(2)存在;
【解析】
(1)根據(jù)單調(diào)性以及二次函數(shù)對稱軸列不等式,解得結(jié)果;
(2)根據(jù)對稱軸與定義區(qū)間位置關(guān)系討論函數(shù)單調(diào)性,確定對應(yīng)函數(shù)值域,根據(jù)條件列方程解得結(jié)果.
解:(1)函數(shù)圖象的對稱軸時直線,
要使在上單調(diào)遞減,應(yīng)滿足,解得,
故實數(shù)的取值范圍為
(2)①當(dāng),即時,在上單調(diào)遞減,
若存在實數(shù)m使得在上的值域是,
則,即,此時無解.
②當(dāng),即時,在上單調(diào)遞增,
則,即,解得.
③當(dāng),即時,在上先遞增,再遞減
所以在處取最大值,則,解得或6,不符合題意,舍去
綜上可得,實數(shù)使得在上的值域恰好是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)(其中).
(1)當(dāng)時,求不等式的解集;
(2)若關(guān)于的不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,,直線:(為參數(shù),).
(Ⅰ)求直線的普通方程;
(Ⅱ)在曲線上求一點,使它到直線的距離最短,并求出點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是
③由,滿足,推出是奇函數(shù);
④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.
A. ①②④B. ①③④C. ②④D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看第23屆平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
(1)根據(jù)上表數(shù)據(jù),能否有的把握認(rèn)為,是否收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率.
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:
(1) 取出的2個球都是白球;
(2)取出的2個球中1個是白球,另1個是紅球.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
… | 5 | 0 | -3 | -4 | -3 | m | … |
(1)m= ;
(2)在圖中畫出這個二次函數(shù)的圖象;
(3)當(dāng)時,x的取值范圍是 ;
(4)當(dāng)時,y的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地發(fā)生地質(zhì)災(zāi)害,使當(dāng)?shù)氐淖詠硭艿搅宋廴,某部門對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足,其中,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)時稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=4,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com