【題目】平面上到兩個定點(diǎn)的距離的積為定值的動點(diǎn)軌跡一般稱為卡西尼(cassin)卵形線,已知曲線為到定點(diǎn)的距離之積為常數(shù)4的點(diǎn)的軌跡,關(guān)于曲線的幾何性質(zhì)有下四個結(jié)論,其中錯誤的是(

A.曲線關(guān)于原點(diǎn)對稱B.的面積的最大值為2

C.其中的取值范圍為D.其中的取值范圍為

【答案】D

【解析】

依題意得,化簡得,將代入可得A正確,由可得C正確,令,得可得,可知D錯誤,將的最大值代入到面積公式可知B正確,從而可知選:D

依題意得

兩邊平方得,

代入得,

所以曲線關(guān)于原點(diǎn)對稱,A正確;

,

,則,所以,

所以,故C正確;

,則,

所以

所以時,取得最大值,

所以,所以,所以D是錯誤的;

由以上可知的最大值為,

的面積為,所以的面積的最大值為,所以B是正確的.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )

A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加

B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍

C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍

D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形是某生態(tài)農(nóng)莊的一塊植物栽培基地的平面圖,現(xiàn)欲修一條筆直的小路(寬度不計(jì))經(jīng)過該矩形區(qū)域,其中都在矩形的邊界上.已知(單位:百米),小路將矩形分成面積分別為(單位:平方百米)的兩部分,其中,且點(diǎn)在面積為的區(qū)域內(nèi),記小路的長為百米.

1)若,求的最大值;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若在其定義域上單調(diào)遞減,求的取值范圍;

2)證明:在區(qū)間恰有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓G的右焦點(diǎn)為F,過F的直線l交橢圓于AB兩點(diǎn),直線與l不與坐標(biāo)軸平行,若AB的中點(diǎn)為N,O為坐標(biāo)原點(diǎn),直線ON交直線x3于點(diǎn)M.

1)求證:MFl;

2)求的最大值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐VABCD中,底面ABCD是矩形,VD⊥平面ABCD,過AD的平面分別與VBVC交于點(diǎn)M,N.

(1) 求證:BC⊥平面VCD

(2) 求證:ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年上半年我國多個省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計(jì)值

殘差

模型乙

估計(jì)值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查中學(xué)生每天玩游戲的時間是否與性別有關(guān),隨機(jī)抽取了男、女學(xué)生各50人進(jìn)行調(diào)查,根據(jù)其日均玩游戲的時間繪制了如下的頻率分布直方圖.

1)求所調(diào)查學(xué)生日均玩游戲時間在分鐘的人數(shù);

2)將日均玩游戲時間不低于60分鐘的學(xué)生稱為“游戲迷”,已知“游戲迷”中女生有6人;

①根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“游戲迷”和性別關(guān)系;

非游戲迷

游戲迷

合計(jì)

合計(jì)

②在所抽取的“游戲迷”中按照分層抽樣的方法抽取10人,再在這10人中任取9人進(jìn)行心理干預(yù),求這9人中男生全被抽中的概率.

附:(其中為樣本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為3的正方形ABCD中,點(diǎn)E,F分別在邊AB,BC(如圖1),且BE=BF,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′(如圖2).

1)求證ADEF

2BFBC時,求點(diǎn)A到平面DEF的距離.

查看答案和解析>>

同步練習(xí)冊答案