16.若(x-$\frac{a}{x}$)6展開式的常數(shù)項(xiàng)為20,則常數(shù)a的值為-1.

分析 在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于20,求得實(shí)數(shù)a的值.

解答 解:(x-$\frac{a}{x}$)6展開式的通項(xiàng)公式為Tr+1=${C}_{6}^{r}$•(-a)r•x6-2r,令6-2r=0,求得r=3,
可得它的常數(shù)項(xiàng)為${C}_{6}^{3}$•(-a3)=20,則常數(shù)a=-1,
故答案為:-1.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)f(x)=sin6x+cos6x的最小正周期,并求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.點(diǎn)(-1,3)關(guān)于直線y=-x的對(duì)稱點(diǎn)是(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知三棱柱ABC-A′B′C′的底面為直角三角形,兩條直角邊AC和BC的長(zhǎng)分別為4和3,側(cè)棱AA′的長(zhǎng)為10.
(1)若側(cè)棱AA′垂直于底面,求該三棱柱的表面積;
(2)若側(cè)棱AA′與底面所成的角為60°,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知F1、F2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn),P是橢圓上一點(diǎn)(異于左、右頂點(diǎn)),過(guò)點(diǎn)P作∠F1PF2的角平分線交x軸于點(diǎn)M,若2|PM|2=|PF1|•|PF2|,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.“xy≠0”是“x≠0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$p:|{1-\frac{x-1}{3}}|$<2;q:x2-2x+1-m2<0,若?p是?q的充分非必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右頂點(diǎn)分別為A,B,M,N是橢圓E上異于A,B的兩點(diǎn),直線AM,BN交于點(diǎn)P(4,t).
(Ⅰ)若直線MN與x軸垂直,求實(shí)數(shù)t的值;
(Ⅱ)記△PMN,△PAB的面積分別是S1(t),S2(t),求$\frac{{{S_1}(t)}}{{{S_2}(t)}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果是0;

查看答案和解析>>

同步練習(xí)冊(cè)答案