A. | 3π | B. | 2$\sqrt{3}$π | C. | 4$\sqrt{3}$π | D. | 12π |
分析 求出正方體的對(duì)角線的長(zhǎng)度,就是外接球的直徑,利用球的體積公式求解即可.
解答 解:因?yàn)橐粋(gè)正方體的頂點(diǎn)都在球面上,它的棱長(zhǎng)為2,
所以正方體的外接球的直徑就是正方體的對(duì)角線的長(zhǎng)度:2$\sqrt{3}$.
所以球的半徑為:$\sqrt{3}$.
所求球的體積為:$\frac{4π}{3}×(\sqrt{3})^{3}$=4$\sqrt{3}π$.
故選:C.
點(diǎn)評(píng) 本題考查球的內(nèi)接體,球的體積的求法,求出球的半徑是解題的關(guān)鍵,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若該大學(xué)某女生身高為170cm,則她的體重必為58.79kg | |
B. | y與x具有正的線性相關(guān)關(guān)系 | |
C. | 回歸直線過(guò)樣本點(diǎn)的中心($\overline x$,$\overline y$) | |
D. | 身高x為解釋變量,體重y為預(yù)報(bào)變量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com