【題目】已知函數(shù)f(x)=aln(x+1)+x2+1,g(x)=﹣x2﹣2mx+4.
(1)當a>0時,求曲線y=f(x)的切線斜率的取值范圍;
(2)當a=﹣4時,若存在x1∈[0,1],x2∈[1,2],滿足f(x1)≥g(x2),求實數(shù)m的取值范圍.
【答案】(1) [2,+∞);(2).
【解析】
(1) 函數(shù)f′(x)=+2x=根據(jù)均值不等式得到最小值為2﹣2,從而得到結果;(2)存在x1∈[0,1],x2∈[1,2],使f(x1)≥g(x2),所以只要f(x)在x∈[0,1]上的最大值大于等于g(x)在x∈[1,2]的最小值即可.
(1)函數(shù)f(x)=aln(x+1)+x2+1的定義域為(﹣1,+∞),
∴f′(x)=+2x= =2﹣2,
當且僅當即x=∈(﹣1,+∞)時取“=”
所以函數(shù)y=f(x)圖象上任一點處切線斜率的取值范圍為[2,+∞).
(2)函數(shù)f(x)=﹣4ln(x+1)+x2+1(x>﹣1),
∴f′(x)=+2x=,
當x∈[0,1]時,f′(x)<0,f(x)為減函數(shù),
所以f(x)在[0,1]上最大值為f(0)=1,
因為存在x1∈[0,1],x2∈[1,2],使f(x1)≥g(x2),
所以只要f(x)在x∈[0,1]上的最大值大于等于g(x)在x∈[1,2]的最小值即可,
只要g(1)≤1或g(2)≤1,
即﹣1﹣2m+4≤1或﹣4﹣4m+4≤1,
解得m.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有甲、乙兩生產車間,其污水瞬時排放量(單位:)關于時間(單位:)的關系均近似地滿足函數(shù),其圖象如圖所示:
(1)根據(jù)圖象求函數(shù)解析式;
(2)若甲車間先投產,1小時后乙車間再投產,求該廠兩車間都投產時刻的污水排放量;
(3)由于受工廠污水處理能力的影響,環(huán)保部門要求該廠兩車間任意時刻的污水排放量之和不超過,若甲車間先投產,為滿足環(huán)保要求,乙車間比甲車間至少需推遲多少小時投產?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某超市為顧客提供四種結賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結賬都可以,這四名顧客購物后,恰好用了其中的三種結賬方式,那么他們結賬方式的可能情況有( )種
A. 19B. 7C. 26D. 12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為.
(1)求函數(shù)f(x)的對稱軸方程及單調遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上所有點的橫坐標縮短到原來的(縱坐標不變),得到函數(shù)y=g(x)的圖象,當x∈(,)時,求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于的一元二次函數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù).
(1)若,,求函數(shù)有零點的概率;
(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(1)求橢圓C的方程;
(2)若不過點A的動直線l與橢圓C相交于P,Q兩點,且=0,求證:直線l過定點,并求出該定點N的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若函數(shù)恰有7個不同零點,則實數(shù)a的取值范圍是( )
A.(0,1)B.[-1,1]C.(-1,1)D.(-1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)將某校高二年級某班的學業(yè)水平測試數(shù)學成績分為、、、、五組,繪制而成的莖葉圖、頻率分布直方圖如下,由于工作疏忽,莖葉圖有部分被損壞,頻率分布直方圖也不完整,請據(jù)此解答如下問題:(注:該班同學數(shù)學成績均在區(qū)間內)
(1)將頻率分布直方圖補充完整.
(2)該班希望組建兩個數(shù)學學習互助小組,班上數(shù)學成績最好的兩位同學分別擔任兩組組長,將此次成績低于60分的同學作為組員平均分到兩組,即每組有一名組長和兩名成績低60分的組員,求此次考試成績?yōu)?/span>52分、54分和98分的三名同學分到同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com