【題目】某工廠有甲、乙兩生產(chǎn)車間,其污水瞬時(shí)排放量(單位:)關(guān)于時(shí)間(單位:)的關(guān)系均近似地滿足函數(shù),其圖象如圖所示:
(1)根據(jù)圖象求函數(shù)解析式;
(2)若甲車間先投產(chǎn),1小時(shí)后乙車間再投產(chǎn),求該廠兩車間都投產(chǎn)時(shí)刻的污水排放量;
(3)由于受工廠污水處理能力的影響,環(huán)保部門要求該廠兩車間任意時(shí)刻的污水排放量之和不超過,若甲車間先投產(chǎn),為滿足環(huán)保要求,乙車間比甲車間至少需推遲多少小時(shí)投產(chǎn)?
【答案】(1) ;(2) ;(3) 至少需推遲小時(shí)投產(chǎn).
【解析】
(1)由圖可得:,利用周期公式可求出,代入求出,即可得函數(shù)解析式;
(2) 該廠時(shí)刻的排污量為甲乙兩車間排污量之和,可得時(shí)刻的排污量:,化簡即可得出;
(3) 設(shè)乙車間至少比甲車間推遲小時(shí)投產(chǎn),
據(jù)題意得,,
化簡可得,借助輔助角可知化簡即可得出,,借助圖象性質(zhì)即可得解.
由圖可得:
由過點(diǎn)可得:
所求函數(shù)的解析式為.
(2)該廠時(shí)刻的排污量為甲乙兩車間排污量之和,此時(shí)甲車間排污量為乙車間為,根據(jù)題意可得時(shí)刻的排污量:
(3)設(shè)乙車間至少比甲車間推遲小時(shí)投產(chǎn),根據(jù)題意可得:
由函數(shù)周期性知,可得:
所以為滿足環(huán)保要求,乙車間比甲車間至少需推遲小時(shí)投產(chǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時(shí)間為()
(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過的有40人,不超過的有15人;在45名女性駕駛員中,平均車速超過的有20人,不超過的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為平均車速超過的人與性別有關(guān).
平均車速超過人數(shù) | 平均車速不超過人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(2)以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過的車輛數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的內(nèi)切球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)和,且圓心C在直線上.
(1)求C圓的方程;
(2)直線l過圓C外一點(diǎn),且直線l與圓C只有一個(gè)公共點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,,,,,E為PB的中點(diǎn).
(1)證明:平面平面PBC;
(2)求直線PD與平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)+x2+1,g(x)=﹣x2﹣2mx+4.
(1)當(dāng)a>0時(shí),求曲線y=f(x)的切線斜率的取值范圍;
(2)當(dāng)a=﹣4時(shí),若存在x1∈[0,1],x2∈[1,2],滿足f(x1)≥g(x2),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com