若復(fù)數(shù)z滿(mǎn)足:z+1=
.
z
(1+i),其中
.
z
是復(fù)數(shù)z的共軛復(fù)數(shù),則z•
.
z
等于(  )
A、3B、5C、8D、10
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)出復(fù)數(shù)z=a+bi,化簡(jiǎn)復(fù)數(shù)方程,利用復(fù)數(shù)相等,求出復(fù)數(shù)z•
.
z
即可.
解答: 解:設(shè)z=a+bi,z+1=
.
z
(1+i),
a+bi+1=(a-bi)(1+i),
a+1=a+b
b=a-b
,解得a=2,b=1,
∴z=2+i,
z•
.
z
=(2+i)(2-i)=5,
故選:B.
點(diǎn)評(píng):本題考查復(fù)數(shù)相等的充要條件的應(yīng)用,復(fù)數(shù)的乘法的運(yùn)算法則,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
6
x
-
5
x2
≥1},集合B={x||x-
(a+1)2
2
|≤
(a-1)2
2
,a∈R},若A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m為常數(shù),函數(shù)f(x)=
m-2x
1+m•2x
為奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)若m>0,試判斷f(x)的單調(diào)性(不需證明);
(Ⅲ)當(dāng)m>0時(shí),若存在x∈[-2,2],使得f(ex+x-k)+f(2)≤0能成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)范圍內(nèi)因式分解:x2-7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC在中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+
3
2
c=b,則角A( 。
A、
π
3
B、
π
6
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列數(shù)列的通項(xiàng)公式,Sn是其前n項(xiàng)和.
(1)Sn=2n2-3n-1;
(2)Sn=3n-2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
3
)(A>0,ω>0)在某一周期內(nèi)的圖象的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為(
12
,2),(
11π
12
,-2).
(1)求A和ω值;
(2)已知α∈(0,
π
2
),且f(
α
2
)=-
2
3
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=cosxsinx的圖象向左平移m個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱(chēng),則正數(shù)m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,三個(gè)內(nèi)角A,B,C滿(mǎn)足:sin2(B+C)=cos(A-B),則角A與角B的大小關(guān)系是( 。
A、A+B=
3
B、A<B
C、A=B
D、A>B

查看答案和解析>>

同步練習(xí)冊(cè)答案