【題目】在等差數(shù)列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{an+bn}是首項為1,公比為c的等比數(shù)列,求{bn}的前n項和Sn .
【答案】解:(Ⅰ)設等差數(shù)列{an}的公差是d. 依題意 a3+a8﹣(a2+a7)=2d=﹣6,從而d=﹣3.
所以 a2+a7=2a1+7d=﹣23,解得 a1=﹣1.
所以數(shù)列{an}的通項公式為 an=﹣3n+2.
(Ⅱ)解:由數(shù)列{an+bn}是首項為1,公比為c的等比數(shù)列,
得 ,即 ,
所以 .
所以
= .
從而當c=1時, ;
當c≠1時,
【解析】(Ⅰ)依題意 a3+a8﹣(a2+a7)=2d=﹣6,從而d=﹣3.由此能求出數(shù)列{an}的通項公式.(Ⅱ)由數(shù)列{an+bn}是首項為1,公比為c的等比數(shù)列,得 ,所以 .所以 = .由此能求出{bn}的前n項和Sn .
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關知識點,需要掌握通項公式:或;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項公式;
(2)設Sn為數(shù)列{an}的前n項和,bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的半徑為1,圓心C(a,2a﹣4),(其中a>0),點O(0,0),A(0,3)
(1)若圓C關于直線x﹣y﹣3=0對稱,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點P,使|PA|=|2PO|,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在平行四邊形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點,現(xiàn)把平行四邊形ABB1A1沿CC1折起如圖2所示,連接B1C,B1A,B1A1 .
(1)求證:AB1⊥CC1;
(2)若AB1= ,求二面角C﹣AB1﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F與橢圓C的一個焦點重合,且拋物線的準線與橢圓C相交于點 .
(1)求拋物線的方程;
(2)過點F是否存在直線l與橢圓C交于M,N兩點,且以MN為對角線的正方形的第三個頂點恰在y軸上?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù).
(1)若,求曲線在處的切線方程;
(2)若無零點,求實數(shù)的取值范圍;
(3)若有兩個相異零點, ,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+m.
(1)試用定義證明:函數(shù)f(x)在(0,+∞)上單調遞增;
(2)若關于x的不等式f(x)≥x3+3x2﹣3x在區(qū)間[1,2]上有解,求m的取值范圍.參考公式:a3﹣b3=(a﹣b)(a2+ab+b2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求k的值及f(x)的表達式.
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+ sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com