分析 (Ⅰ)當(dāng)n≥2時利用an=Sn-Sn-1化簡,進(jìn)而可知an=n;
(Ⅱ)通過(I)裂項可知cn=$\frac{1}{n}$-$\frac{1}{n+1}$,進(jìn)而并項相加即得結(jié)論.
解答 解:(Ⅰ)∵Sn=$\frac{1}{2}({n^2}+n),(n∈{N^*})$,
∴當(dāng)n≥2時,Sn-1=$\frac{1}{2}$[(n-1)2+n-1],
兩式相減得:an=Sn-Sn-1
=$\frac{1}{2}$(2n-1+1)
=n,
又∵a1=$\frac{1}{2}$(1+1)=1滿足上式,
∴數(shù)列{an}的通項公式an=n;
(Ⅱ)由(I)可知${c_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴${T_n}<\frac{37}{41}$即$\frac{n}{n+1}$<$\frac{37}{41}$,
解得:n<$\frac{37}{4}$,又n∈N*,
∴nmax=9.
點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P∧Q | B. | ¬P∧Q | C. | P∧¬Q | D. | ¬P∧¬Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.1升 | B. | 2.2升 | C. | 2.3升 | D. | 2.4升 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x+2y-1=0 | B. | 3x+2y-7=0 | C. | 2x-3y+5=0 | D. | 2x-3y+8=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com