若函數(shù)f(x)=|-1|-|3x-a|的最大值為1,則實(shí)數(shù)a的值是
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,化簡(jiǎn)f(x)=|-1|-|3x-a|=1-|3x-a|≤1,從而可得答案.
解答: 解:f(x)=|-1|-|3x-a|
=1-|3x-a|≤1,
故當(dāng)3x-a=0,
即x=
a
3
時(shí),等號(hào)成立;
故a∈R;
故答案為:a∈R.
點(diǎn)評(píng):本題考查了函數(shù)的最值的求法,同時(shí)考查了絕對(duì)值函數(shù)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在遞增等差數(shù)列{an}中,前三項(xiàng)的和為9,前三項(xiàng)的積為15,{bn}的前n項(xiàng)和為Sn,且Sn=2n+1-2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式; 
(2)設(shè)cn=
1
anan+1
,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+2x+b(b為常數(shù)),則f(-1)=( 。
A、3B、-3C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí)f(x)=3x,若f(x0)=-
1
9
,則x0=( 。
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校準(zhǔn)備從甲、乙兩名同學(xué)中選一名去參加數(shù)學(xué)競(jìng)賽,已知甲、乙兩位同學(xué)在高一的六次考試中的成績(jī)?nèi)鐖D,利用所學(xué)過(guò)的知識(shí),你認(rèn)為選哪位同學(xué)去比較合適?(要求有數(shù)據(jù)說(shuō)明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù). 當(dāng)x≥0時(shí),f(x)=
5
16
x2(0≤x≤2)
(
1
2
)x+1(x>2)
,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知sinθ+cosθ=
2
,求sinθ•cosθ的值;
(2)已知tanθ=2,求
sinθ-cosθ
2sinθ+3cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
4
5
,sinθcosθ<0,求sin(θ-π)sin(
3
2
π-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)lg2+lg5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案