8.點(diǎn)A(x,y)是675°角終邊上異于原點(diǎn)的一點(diǎn),則$\frac{y}{x}$的值為( 。
A.1B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:由題意,角675°的終邊為點(diǎn)A(x,y),
那么:tan675°=$\frac{y}{x}$,
可得:$\frac{y}{x}$=tan(720°-45°)=-tan45°=-1.
故選:B.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,和誘導(dǎo)公式的化簡(jiǎn),屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.我校兼程樓共有5層,每層均有兩個(gè)樓梯,由一樓到五樓的走法( 。
A.10種B.16種C.25種D.32種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-$\frac{2}{3}$,滿足Sn+$\frac{1}{S_n}$+2=an(n≥2),則Sn=(  )
A.$-\frac{n+1}{2n+1}$B.$-\frac{n+1}{n+2}$C.$-\frac{{{2^n}-1}}{n+2}$D.$\frac{7-5n}{7n-10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知a,b,c∈R,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.
(2)請(qǐng)用數(shù)學(xué)歸納法證明:(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(diǎn)$(\sqrt{2},0)$引直線l與曲線y=$\sqrt{1-{x^2}}$相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取得最大值時(shí),直線l的傾斜角為150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長(zhǎng)是2cm,求球的表面積.
(2)已知各面均為等邊三角形的四面體S-ABC的棱長(zhǎng)為1,求它的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于函數(shù)f(x)=2sin(3x-$\frac{3}{4}$π),以下說法:①其最小正周期為$\frac{2π}{3}$;②圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱;③直線x=-$\frac{π}{4}$是其一條對(duì)稱軸.其中正確的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,則曲線C上的點(diǎn)到直線$\left\{\begin{array}{l}{x=-1+t}\\{y=2t}\end{array}\right.$(t為參數(shù))的距離的最小值為$\frac{4\sqrt{5}}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x∈R,${(\frac{1}{3})^x}$>0”的否定是( 。
A.?x∈R,${(\frac{1}{3})^x}<0$B.?x∈R,${(\frac{1}{3})^x}≤0$C.?x∈R,${(\frac{1}{3})^x}>0$D.?x∈R,${(\frac{1}{3})^x}≤0$

查看答案和解析>>

同步練習(xí)冊(cè)答案