7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求實(shí)數(shù)a的取值集合.

分析 (Ⅰ)若a=1,則A={x|1<x≤6},由此能求出A∪B.
(Ⅱ)當(dāng)A=∅時(shí),a=0滿足條件;當(dāng)A≠∅時(shí),a>0,此時(shí),$A=\{x|\frac{1}{a}<x≤\frac{6}{a}\}$,由A∩B=∅,得$0<a≤\frac{1}{2}$,由此能求出實(shí)數(shù)a的取值集合.

解答 解:(Ⅰ)若a=1,則A={x|1<x≤6},
∴$A∪B=\{x|-\frac{1}{2}<x≤6\}$.…(4分);
(Ⅱ)∵A∩B=∅且a≥0,
∴(i)當(dāng)A=∅時(shí),a=0滿足條件.
(ⅱ)當(dāng)A≠∅時(shí),a>0,此時(shí),$A=\{x|\frac{1}{a}<x≤\frac{6}{a}\}$;
由于A∩B=∅,所以,$\frac{1}{a}≥2$即$0<a≤\frac{1}{2}$
綜上所述:實(shí)數(shù)a的取值集合$[0,\frac{1}{2}]$…(10分).

點(diǎn)評(píng) 本題考查并集的求法,考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集和交集性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{a}$+$\overrightarrow$=(x,-1).若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.C.2π+4D.3π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρ=4cosθ,直線l過點(diǎn)M(1,0)且傾斜角α=$\frac{π}{6}$.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線l的參數(shù)方程;
(2)若直線l與曲線C交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中,a1=1,其前n項(xiàng)的和為Sn,且滿足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2).
(1)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)證明:當(dāng)n≥2時(shí),S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若曲線f(x)=ax2+$\frac{1}{2}$x+lnx在點(diǎn)(1,f(1))處的切線與y=$\frac{7}{2}$x-1平行,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1<2${\;}^{{x^2}-2x-3}}$<32},B={x|log2(x+3)<3}.
(1)求(∁RA)∩B;
(2)若(a,a+2)⊆B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案