圓ρ=2cosθ的半徑是________.

1
分析:將極坐標(biāo)方程為ρ=2cosθ,化為一般方程,然后再判斷.
解答:∵圓的極坐標(biāo)方程為ρ=2cosθ,
∴x=ρcosθ,y=ρsinθ,消去ρ和θ得,
∴(x-1)2+y2=1,
∴圓心的直角坐標(biāo)是(1,0),半徑長(zhǎng)為1.
故答案為:1.
點(diǎn)評(píng):此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過
N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長(zhǎng).
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=2cosθ,則圓心C到直線l的距離為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:
x=2+2cosθ
y=2sinθ
(θ為參數(shù))
,直線l:
x=2+
4
5
t
y=
3
5
t
(t為參數(shù))

(Ⅰ)求圓C的普通方程.若以原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,寫出圓C的極坐標(biāo)方程.
( II)判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由;若相交,請(qǐng)求出弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=
3
t
(l為參數(shù)),以O(shè)x的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,則圓C上的點(diǎn)到直線l距離的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

同步練習(xí)冊(cè)答案