6.平面內(nèi)一動點M,到兩定點F1(-3,0),F(xiàn)2(3,0)的距離之和等于10.
(1)求動點M的軌跡方程;    
(2)判斷點$N(3,\frac{16}{5})$是否在曲線上.

分析 (1)由題意可知:橢圓的焦點在x軸上,設(shè)橢圓方程,根據(jù)橢圓的定義,可知a和c,則b2=a2-c2,即可求得動點M的軌跡方程;
(2)將N點代入橢圓方程,驗證是否滿足.

解答 解:(1)由橢圓的定義可知:橢圓的焦點在x軸上,設(shè)橢圓的方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由2a=10,a=5,c=3,
b2=a2-c2=16,
∴橢圓的標準方程:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$;
(2)由$\frac{9}{25}+\frac{1{6}^{2}}{25×16}=1$,故點$N(3,\frac{16}{5})$在曲線上.

點評 本題考查橢圓的定義及方程的應用,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.若半徑為2cm的扇形面積為8cm2,則該扇形的周長是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{x+a}{{{x^2}+3{a^2}}}(a≠0,a∈R)$.
(1)設(shè)函數(shù)$g(x)=\frac{{{x^2}+12}}{x+2}{e^x}$,當a=-2時,討論y=f(x)g(x)的單調(diào)性,并證明當x>0時,(x-2)ex+x+2>0
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=1時,若對任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=(x-1)3,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)=f(x0),其中x1≠x0,求證:x1+2x0=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=x2由x=1至x=1+△x的平均變化率的取值范圍是(1.975,2.025),則增量△x的取值范圍為( 。
A.(-0.025,0.025)B.(0,0.025)C.(0.025,1)D.(-0.025,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(Ⅰ)拋物線的頂點在原點,坐標軸為對稱軸,并經(jīng)過點P(-3,-6),求此拋物線的方程.
(Ⅱ)已知圓:x2+y2=c2(c>0),把圓上的各點縱坐標不變,橫坐標伸長到原來的$\sqrt{2}$倍得一橢圓.求橢圓方程,并證明橢圓離心率是與c無關(guān)的常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在數(shù)列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中實數(shù)c≠0.
(1)求a2,a3,并由此歸納出{an}的通項公式
(2)用數(shù)學歸納法證明(Ⅰ)的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x2+3(1-m2)x,(0<m<1).
(Ⅰ) 求函數(shù)f(x)的極大值點和極小值點;
(Ⅱ) 若f(x)恰好有三個零點,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S7=70且a1,a2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{{2{S_n}}}{n}$,求數(shù)列$\left\{\frac{1}{_{n}_{n+1}}\right\}前的n$項和Tn

查看答案和解析>>

同步練習冊答案