精英家教網 > 高中數學 > 題目詳情
函數f(x)=log3|2x+a|的圖象的對稱軸方程為x=2,則常數a=
-4
-4
分析:設t=(2x+a)2=4x2+4ax+a2,由函數f(x)=log3|2x+a|的圖象關于直線x=2對稱,能夠得到二次函數的對稱軸為2,由此能求出a
解答:解:令t=(2x+a)2=4x2+4ax+a2
∵函數f(x)=log3|2x+a|的圖象關于直線x=2對稱,
-
a
2
=2

解得a=-4.
故答案為:-4.
點評:本題考查對數函數的性質和應用,注意二次函數的對稱軸的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、設函數f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數,則實數a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設有三個命題:“①0<
1
2
<1.②函數f(x)=log 
1
2
x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•茂名二模)設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調函數.現(xiàn)給出下列命題:
①函數f(x)=log 
1
2
x為(0,+∞)上的高調函數;
②函數f(x)=sinx為R上的高調函數;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上的高調函數,那么實數m的取值范圍是[2,+∞);
其中正確的命題的個數是(  )

查看答案和解析>>

同步練習冊答案