【題目】已知橢圓C: (a>0,b>0)的離心率為 ,點(diǎn)A(0,﹣2)與橢圓右焦點(diǎn)F的連線的斜率為
(1)求橢圓C的方程;
(2)O為坐標(biāo)原點(diǎn),過點(diǎn)A的直線l與橢圓C相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時,求直線l的方程.

【答案】
(1)解:設(shè)F(c,0).

∵直線AF的斜率為 ,

= ,解得c=

又離心率為e= = ,

由b2=a2﹣c2,解得:a=2,b=1,

∴橢圓E的方程為 +y2=1.


(2)解:設(shè)P(x1,y1),Q(x2,y2),由題意可設(shè)直線l的方程為:y=kx﹣2,與橢圓方程聯(lián)立,

整理得:(1+4k2)x2﹣16kx+12=0,當(dāng)△=16(4k2﹣3)>0時,即k2 時,

x1+x2= ,x1x2= ,

∴|PQ|= ,

∵點(diǎn)O到直線l的距離d= ,

∴SOPQ= d|PQ|= ,

設(shè) =t>0,則4k2=t2+3,

∴SOPQ= = ≤1,

當(dāng)且僅當(dāng)t=2,即 =2,解得k=± 時取等號,且滿足△>0,

∴△OPQ的面積最大時,直線l的方程為:y=± x﹣2


【解析】(1)設(shè)F(c,0),利用直線的斜率公式可得關(guān)于c的方程,求出c,由離心率e= = ,求得a,由b2=a2﹣c2 , 求得b的值,即可求得橢圓C的方程;(2)設(shè)P(x1 , y1),Q(x2 , y2),由題意可設(shè)直線l的方程為:y=kx﹣2,與橢圓的方程聯(lián)立可得(1+4k2)x2﹣16kx12=0,求出方程的根,從而表示出|PQ|以及點(diǎn)O到直線PQ的距離,從而表示出SOPQ , 再利用基本不等式的性質(zhì)即可得出直線l的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△中,,,點(diǎn)邊上,且.

(1)若,求

(2)若,求△的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a、b、c,且滿足3asinC=4ccosA, =3.
(1)求△ABC的面積S;
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的中點(diǎn).

(1)求證:;

(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫出點(diǎn)的軌跡,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運(yùn)動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運(yùn)動員只有在摔倒或到達(dá)終點(diǎn)時才停止滑行,現(xiàn)在用表示該運(yùn)動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).

(1)求該運(yùn)動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案