【題目】設(shè)Sn為數(shù)列{an}的前n項和,已知,對任意n∈N*,都有2Sn=(n+1)an.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列的前項和為Tn,求Tn的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=mxα的圖象經(jīng)過點A(2,2).
(1)試比較2ln f(3)與3ln f(2)的大小;
(2)定義在R上的函數(shù)g(x)滿足g(-x)=g(x), g(4+x)=g(4-x),且當(dāng)x∈[0,4]時,
. 若關(guān)于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151個整數(shù)解,求實數(shù)n的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB⊥BC,BA=BC,BD是邊AC上的高,沿BD將△ABC折起,當(dāng)三棱錐A﹣BCD的體積最大時,該三棱錐外接球表面積為( 。
A. 12πB. 24πC. 36πD. 48π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+kx+2y+k2=0,過點P(1,﹣1)可作圓的兩條切線,則實數(shù)k的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)如表所示是某市最近5年個人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計第6年該市的個人年平均收入(保留三位有效數(shù)字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是從調(diào)查某行業(yè)個人平均收入與接受專業(yè)培訓(xùn)時間關(guān)系得到2×2列聯(lián)表:
受培時間一年以上 | 受培時間不足一年 | 總計 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
總計 | 100 |
完成上表,并回答:能否在犯錯概率不超過0.05的前提下認(rèn)為“收入與接受培訓(xùn)時間有關(guān)系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機(jī)模擬的方法估計事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個字,以每三個隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點O為BC的中點,AC⊥PB,平面PBC⊥平面ABC.
(1)求直線PB和平面ABC所成的角的大;
(2)求證:平面PAC⊥平面PBC;
(3)已知E為PO的中點,F(xiàn)是AB上的點,AF=AB.若EF∥平面PAC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進(jìn)行理科、文科數(shù)學(xué)成績對比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績進(jìn)行統(tǒng)計,其頻率分布表如下.
分組 | 頻數(shù) | 頻率 | 分組 | 頻數(shù) | 頻率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
總計 | 100 | 1 | 總計 | 100 | 1 |
理科 文科
(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求文科數(shù)學(xué)成績的中位數(shù)的估計值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績與文理科有關(guān):
數(shù)學(xué)成績120分 | 數(shù)學(xué)成績<120分 | 合計 | |
理科 | |||
文科 | |||
合計 | 200 |
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com