分析 (I)利用三角函數恒等變換的應用化簡已知等式可得8cos2A+2cosA-3=0,從而解得cosA=$\frac{1}{2}$,由A為銳角,即可求得A的值.
(Ⅱ)利用余弦定理及基本不等式即可得:3=b2+c2-bc≥2bc-bc=bc,當且僅當b=c時等號成立,從而得解.
解答 解:(I)∵sin2$\frac{B+C}{2}$+cos2A=$\frac{1}{4}$.
⇒$\frac{1-cos(π-A)}{2}$+cos2A=$\frac{1}{4}$,
⇒8cos2A+2cosA-3=0,
∴解得:cosA=$\frac{1}{2}$或-$\frac{3}{4}$(A為銳角,舍去).
∴A=$\frac{π}{3}$.
(Ⅱ)∵A=$\frac{π}{3}$,a=$\sqrt{3}$,
∴由余弦定理可得:3=b2+c2-bc≥2bc-bc=bc,當且僅當b=c時等號成立,
∴bc的最大值為:3.
點評 本題主要考查了三角函數恒等變換的應用,余弦定理及基本不等式的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a=$\frac{1}{2}$ | B. | a=$\frac{1}{2}$或a=0 | C. | a=0 | D. | a≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{1-{t}^{2}}}{t}$ | B. | $\frac{\sqrt{1-{t}^{2}}}{t}$ | C. | $\frac{\sqrt{1+{t}^{2}}}{t}$ | D. | -$\frac{\sqrt{1+{t}^{2}}}{t}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | $\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com