點(diǎn)P從某一點(diǎn)O出發(fā),按逆時針方向沿周長為1的圖形運(yùn)動一周,O,P兩點(diǎn)連線的距離y與點(diǎn)P走過的路程x的函數(shù)關(guān)系如下圖所示,則點(diǎn)P走過的圖形是    (    )

答案:D  【解析】本題考查我們分析問題和對圖像的解讀能力.根據(jù)圖像發(fā)現(xiàn),走到一半路程時,O、P兩點(diǎn)連線的距離最大,所以排除B,C;又因?yàn)榍八姆种坏穆烦毯瘮?shù)圖像變化情況為一曲線段,若為A,則其圖像應(yīng)為一直線段,故A不正確.所以答案選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個新建居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)A(3,20),B(-10,0),C(14,0)處.現(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個文化中心.
(I)寫出點(diǎn)P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明);
(II)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請確定點(diǎn)P的位置,使其到三個居民區(qū)的“L路徑”長度之和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P從某一點(diǎn)O出發(fā),按逆時針方向沿周長為1的圖形運(yùn)動一周,O、P兩點(diǎn)連線的距離y與點(diǎn)P走過的路程x的函數(shù)關(guān)系如下圖所示,則點(diǎn)P走過的圖形是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖南卷解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑成為M到N的一條“L路徑”。如圖所示的路徑都是M到N的“L路徑”。某地有三個新建的居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)處,F(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個文化中心。

(I)寫出點(diǎn)P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明);

(II)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請確定點(diǎn)P的位置,使其到三個居民區(qū)的“L路徑”長度值和最小。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年湖南省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個新建居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)A(3,20),B(-10,0),C(14,0)處.現(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個文化中心.
(I)寫出點(diǎn)P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明);
(II)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請確定點(diǎn)P的位置,使其到三個居民區(qū)的“L路徑”長度之和最。

查看答案和解析>>

同步練習(xí)冊答案